

### NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE (NAAC Accredited)



(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

#### DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

#### **COURSE MATERIALS**



#### CS 303 SYSTEM SOFTWARE

#### VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in education.

#### MISSION OF THE INSTITUTION

**NCERC** is committed to transform itself into a center of excellence in Learning and Research in Engineering and Frontier Technology and to impart quality education to mould technically competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated research scientists and intellectual leaders of the country who can spread the beams of light and happiness among the poor and the underprivileged.

#### ABOUT DEPARTMENT

♦ Established in: 2002

♦ Course offered: B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

- ♦ Approved by AICTE New Delhi and Accredited by NAAC
- ♦ Affiliated to the University of A P J Abdul Kalam Technological University.

#### **DEPARTMENT VISION**

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals to facilitate continuous technological advancement.

#### **DEPARTMENT MISSION**

- 1. To Impart Quality Education by creative Teaching Learning Process
- 2. To Promote cutting-edge Research and Development Process to solve real world problems with emerging technologies.
- 3. To Inculcate Entrepreneurship Skills among Students.
- 4. To cultivate Moral and Ethical Values in their Profession.

#### PROGRAMME EDUCATIONAL OBJECTIVES

- **PEO1:** Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering through lifelong learning.
- **PEO2:** Graduates will be able to Analyse, design and development of novel Software Packages, Web Services, System Tools and Components as per needs and specifications.
- **PEO3:** Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by learning and applying new technologies.
- **PEO4:** Graduates will be able to adopt ethical attitudes, exhibit effective communication skills, Teamwork and leadership qualities.

#### **PROGRAM OUTCOMES (POS)**

#### **Engineering Graduates will be able to:**

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### PROGRAM SPECIFIC OUTCOMES (PSO)

**PSO1**: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-time Problems and to investigate for its future scope.

**PSO2**: Ability to learn and apply various methodologies for facilitating development of high quality System Software Tools and Efficient Web Design Models with a focus on performance

**PSO3**: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create innovative career path and for the socially relevant issues.

#### **COURSE OUTCOMES**

| CO1 | To identify and classify different software into different categories. |
|-----|------------------------------------------------------------------------|
| CO2 | To design, analyze and implement two pass assembler                    |
| CO3 | To design, analyze and implement one pass and multi pass assembler.    |
| CO4 | To design, analyze and implement linkers and loaders                   |
| CO5 | To design, analyze and implement macro processors.                     |
| CO6 | To critique the features of modern editing /debugging tools.           |

#### MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

|     | P<br>O<br>1 | PO 2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO 7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 |
|-----|-------------|------|---------|---------|---------|---------|------|---------|---------|----------|----------|----------|
| CO1 | 3           | -    | -       | -       | -       | -       | -    | -       | -       | -        | -        | -        |
| CO2 | 3           | 3    | 3       | 2       | -       | -       | -    | -       | -       | -        | -        | -        |
| CO3 | 3           | 3    | 3       | 2       | -       | -       | -    | -       | -       | -        | -        | -        |
| CO4 | 3           | 3    | 3       | -       | -       | -       | -    | -       | -       | -        | -        | -        |
| CO5 | 3           | 3    | 3       | -       | -       | -       | -    | -       | -       | -        | -        | -        |
| CO6 | 3           | 2    | -       | -       | -       | -       | -    | -       | -       | -        | -        | -        |

#### CO PSO'S Mapping

|     | PSO1 | PSO2 | PSO3 |
|-----|------|------|------|
| CO1 | 3    | -    | -    |
| CO2 | 3    | 2    | -    |
| CO3 | 3    | 2    | -    |
| CO4 | 3    | 2    | -    |
| CO5 | 3    | 2    | 1    |
| CO6 | 3    | -    | -    |

 $Note: H-Highly\ correlated = 3, M-Medium\ correlated = 2, L-Less\ correlated = 1$ 

#### **SYLLABUS**

| Course | Course Name     | L-T-P   | Year of      |
|--------|-----------------|---------|--------------|
| code   |                 | Credits | Introduction |
| CS303  | SYSTEM SOFTWARE | 2-1-0-3 | 2016         |

Prerequisite: Nil

#### Course Objectives

 To make students understand the design concepts of various system software like Assembler, Linker, Loader and Macro pre-processor, Utility Programs such as Text Editor and Debugger.

#### Syllabus

Different types of System Software, SIC & SIC/XE Architecture and Programming, Basic Functions of Assembler, Assembler Design, Single pass and 2 Pass Assemblers and their Design, Linkers and Loaders, Absolute Loader and Relocating loader, Design of Linking Loader, Macro Processor and its design, Fundamentals of Text Editor Design, Operational Features of Debuggers

#### Expected Outcome

The Students will be able to

- distinguish different software into different categories...
- ii. design, analyze and implement one pass, two pass or multi pass assembler.
- design, analyze and implement loader and linker.
- design, analyze and implement macro processors.
- critique the features of modern editing /debugging tools.

#### Text book

 Leland L. Beck, System Software: An Introduction to Systems Programming, 3/E, Pearson Education Asia, 1997.

#### References

- D.M. Dhamdhere, Systems Programming and Operating Systems, Second Revised Edition, Tata McGraw Hill.
- http://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp 1.html The C Preprocessor
- 3. J Nithyashri, System Software, Second Edition, Tata McGraw Hill.
- John J. Donovan, Systems Programming, Tata McGraw Hill Edition 1991.
- Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman, Linux Device Drivers, Third Edition, O.Reilly Books
- M. Beck, H. Bohme, M. Dziadzka, et al., Linux Kernel Internals, Second Edition, Addison Wesley Publications,
- Peter Abel, IBM PC Assembly Language and Programming, Third Edition, Prentice Hall of India.
- Writing UNIX device drivers George Pajari Addison Wesley Publications (Ebook: http://tocs.ulb.tu-darmstadt.de/197262074.pdf).

e m

|        | Course Plan |       |       |
|--------|-------------|-------|-------|
| Module | Contents    | Hours | End   |
|        |             |       | Sem   |
|        |             |       | Exam. |
|        |             |       | Marks |

|    | Introduction: System Software Vs. Application Software, Different System                                                             |   |      |
|----|--------------------------------------------------------------------------------------------------------------------------------------|---|------|
|    | Software- Assembler, Linker, Loader, Macro Processor, Text Editor,                                                                   | 2 |      |
| I  | Debugger, Device Driver, Compiler, Interpreter, Operating                                                                            |   | 15%  |
|    | System(Basic Concepts only) SIC & SIC/XE Architecture, Addressing modes, SIC & SIC/XE                                                |   |      |
|    | Instruction set, Assembler Directives and Programming.  Assemblers                                                                   | 6 |      |
|    | Basic Functions of Assembler. Assembler output format - Header,                                                                      |   |      |
| II | Text and End Records- Assembler data structures, Two pass assembler algorithm, Hand assembly of SIC/XE program, Machine              | 6 | 15 % |
|    | dependent assembler features.                                                                                                        |   |      |
|    | FIRST INTERNAL EXAM                                                                                                                  |   |      |
| Ш  | Assembler design options:  Machine Independent assembler features – program blocks, Control                                          |   |      |
|    | sections, Assembler design options- Algorithm for Single Pass                                                                        | _ |      |
|    | assembler, Multi pass assembler, Implementation example of MASM<br>Assembler                                                         | 7 | 15 % |
|    | Linker and Loader                                                                                                                    |   |      |
| IV | Basic Loader functions - Design of absolute loader, Simple bootstrap                                                                 |   |      |
|    | Loader, Machine dependent loader features- Relocation, Program<br>Linking, Algorithm and data structures of two pass Linking Loader, | 7 | 15 % |
|    | Machine dependent loader features, Loader Design Options.                                                                            |   |      |
|    | SECOND INTERNAL EXAM                                                                                                                 |   |      |
|    | Macro Preprocessor:- Macro Instruction Definition and Expansion. One pass Macro                                                      |   |      |
| V  | processor Algorithm and data structures, Machine Independent Macro                                                                   | 7 | 20 % |
|    | Processor Features, Macro processor design options                                                                                   |   |      |
| L  | r roccion r canarco, inacio processor acorgii opirono                                                                                |   |      |
|    | Device drivers:                                                                                                                      | 2 |      |
|    | Anatomy of a device driver, Character and block device drivers,<br>General design of device drivers                                  |   |      |
|    |                                                                                                                                      |   | 20 % |
| VI | Text Editors: Overview of Editing, User Interface, Editor Structure.                                                                 | 2 |      |
|    | Debuggers :-                                                                                                                         |   |      |
|    | Debugging Functions and Capabilities, Relationship with other parts<br>of the system, Debugging Methods- By Induction, Deduction and | 4 |      |
|    | Backtracking.                                                                                                                        |   |      |
|    | END SEMESTER EXAM                                                                                                                    |   |      |

#### Question Paper Pattern

- 1. There will be five parts in the question paper A, B, C, D, E
- 2. Part A
  - a. Total marks: 12
  - Four questions each having 3 marks, uniformly covering modules I and II;
     Allfour questions have to be answered.
- Part B
  - a. Total marks: 18
  - <u>Three</u> questionseach having <u>9</u> marks, uniformly covering modules I and II;
     <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
  - a. Total marks: 12
  - Four questions each having 3 marks, uniformly covering modules III and IV; Allfour questions have to be answered.
- Part D
  - a. Total marks: 18
  - <u>Three</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
  - a. Total Marks: 40
  - <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
  - A question can have a maximum of three sub-parts.
- There should be at least 60% analytical/numerical questions.

### **QUESTION BANK**

|    | MODULE I                                                                                                                             |     |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------|-----|----|
|    | QUESTIONS                                                                                                                            | CO  | KL |
| 1  | Define the Functions of an Assembler                                                                                                 | CO1 | K1 |
| 2  | List any Four Addressing modes of SIC/XE                                                                                             | CO1 | K1 |
| 3  | Summarize the instruction formats used in SIC                                                                                        | CO1 | K2 |
| 4  | Write the sequence of instructions for SIC/XE to divide BETA by GAMA and to store integer quotient in ALPHA reminder in DELTA        | CO1 | K5 |
| 5  | Illustrate the SIC/XE architecture, Explaining in detail data and instruction formats.                                               | CO1 | К3 |
| 6  | Describe the format of Object Program generated by the Two Pass SIC Assembler Algorithm                                              | CO1 | K2 |
| 7  | Summarize debugger, text editor and device driver.                                                                                   | CO1 | K2 |
| 8  | Illustrate the SIC architecture in detail.                                                                                           | CO1 | К3 |
| 9  | Differentiate System software and application software.                                                                              | CO1 | K4 |
| 10 | Summarize the instruction formats used in SIC/XE                                                                                     | CO1 | K2 |
| 11 | Discuss the SIC/XE memory, registers, data and instruction formats and addressing modes                                              | CO1 | K2 |
| 12 | Let NUMBERS be an array of 100 words. Write a sequence of instructions for SIC and SIC/XE to set all 100 elements of the array to 1. | CO1 | K5 |
|    | MODULE II                                                                                                                            |     |    |
| 1. | Define the Functions of an Assembler                                                                                                 | CO2 | K1 |
| 2. | Describe Program Relocation                                                                                                          | CO2 | K2 |
| 3. | List Assembler directives in SIC                                                                                                     | CO2 | K1 |
| 4. | Give the Algorithm for Pass1 of two Pass SIC<br>Assembler                                                                            | CO2 | K2 |
| 5. | Describe the format of Object Program generated by the Two Pass SIC Assembler Algorithm                                              | CO2 | K2 |
| 6. | Give the use of SYMTAB and OPTAB                                                                                                     | CO2 | K2 |

| e Algorithm for Pass2 of SIC Assembler  MODULE III  erals.  hple, write notes on program blocks.  e Symbol defining statements in assemblers. | CO2 CO3 CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K5  K1  K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| erals.  uple, write notes on program blocks.  e Symbol defining statements in assemblers.                                                     | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nple, write notes on program blocks. e Symbol defining statements in assemblers.                                                              | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| e Symbol defining statements in assemblers.                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CEVEDEE 1 EVEDEE                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| urpose of EXTREF and EXTDEF directives                                                                                                        | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t notes on MASM Assembler                                                                                                                     | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                                                                                                                                             | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | К3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n detail about Control section and its                                                                                                        | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>-</u>                                                                                                                                      | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ate control sections and program blocks in                                                                                                    | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K1&K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                               | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | К3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>                                                                                                                                      | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t note on dynamic linking                                                                                                                     | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | К3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| explain pass one algorithm for a linking                                                                                                      | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| es in detail about program linking.                                                                                                           | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | К3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ith example dynamic linking and automatic                                                                                                     | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | tructure and purpose of Modification record e record e concept of single pass assembler with sample control sections and program blocks n detail about Control section and its ecords. n detail assembler independent features- mbol defining statements and expressions. ate control sections and program blocks in also point out the assembler directives the external reference handling of an orward reference. Illustrate the forward handling by a single pass assembler.  MODULE IV Relocation, Linking and Loading. es on different loader design options explain two pass algorithm for a linking etail about machine dependent features of explain pass one algorithm for a linking es in detail about program linking. | tructure and purpose of Modification record e record e concept of single pass assembler with cample control sections and program blocks n detail about Control section and its ecords. n detail assembler independent features- mbol defining statements and expressions. ate control sections and program blocks in also point out the assembler directives the external reference handling of an cos explain by a single pass assembler.  MODULE IV Relocation, Linking and Loading. es on different loader design options explain two pass algorithm for a linking etail about machine dependent features of explain pass one algorithm for a linking cos explain pass one algorithm for a linking cos es in detail about program linking. CO4 |

| 9 | List and explain different loader options                                                                    | CO4 | K1 & K2 |
|---|--------------------------------------------------------------------------------------------------------------|-----|---------|
|   | MODULE V                                                                                                     |     |         |
| 1 | Illustrate about recursive macro expansion.                                                                  | CO5 | К3      |
| 2 | Design an iterative algorithm for a one pass macro                                                           | CO5 | K5      |
| 3 | Differentiate between a macro and a subroutine.  Illustrate macro definition and expansion using an example. | CO5 | K4      |
| 4 | Illustrate about recursive macro expansion.                                                                  | CO5 | К3      |
| 5 | Write note on conditional macro expansion.                                                                   | CO5 | К3      |
| 6 | Illustrate the data structure required for a macro processor algorithm and explain the format of each.       | CO5 | К3      |
| 7 | Illustrate about macro definion and expansion                                                                | CO5 | К3      |
| 8 | Explain keyword macro parameters and how unique label generated in a macro expansion.                        | CO5 | K5      |
| 9 | Explain the macro processor algorithm                                                                        | CO5 | K5      |
|   | MODULE VI                                                                                                    |     |         |
| 1 | Differentiate between character and block device drivers.                                                    | CO6 | K4      |
| 2 | Explain the structure of text editor with the help of a diagram.                                             | CO6 | K5      |
| 3 | Discuss about device drivers with neat sketch.                                                               | CO6 | K2      |
| 4 | Explain about debugging and different debugging techniques.                                                  | CO6 | K5      |
| 5 | Differentiate Text editor and debugger                                                                       | CO6 | K4      |
| 6 | Explain the design of driver with diagrammatic representation.                                               | CO6 | K5      |
| 7 | Describe the function and capabilities of interactive debugging system.                                      | CO6 | K5      |
| 8 | Explain different debugging methods in detail. What is a debugger?                                           | CO6 | K5      |

|       | APPENDIX 1                                             |
|-------|--------------------------------------------------------|
|       | CONTENT BEYOND THE SYLLABUS                            |
| SL NO | TOPIC                                                  |
| 1     | commands used in VI text editors.                      |
| 2     | Detailed study of structure and record formats of DLL. |

| MODULE NOTE | ES |
|-------------|----|
|             |    |

MODULE-I. S/w vs. Application Software, Different System System 30ftwere - Assembler, Linker, Loader, Macro processor, Text Editor, Debugger, Device , Compiler, Interpreter, Operating System Driver C Basic Concepts only). SIC 2 SIC /XE A achitecture, Addrewing modes, SIC & SIC/XE Instruction Set, Assembler Directives and pregramming. ⇒ S/m Software vs. Application Software · System Software is general purpose software hardware.

It provides platform to run application softwares

· Application 3 oftevere is 3 pecific purpose 3/w Which is used by user for performing specific task

Application Software 3 precidisheets word processors Data bases Bystem Software Internet Computer Oberating Hardware

Operating Cpu 2 disk, mouse, Utilities

printer, etc. printer, etc. to the machine language.

# Difference between System softwere L Application Slw.

## system sottware

- operating computer how.
- 2. 3/m S/w s are installed on the computer when OS is installed.
- 3. In general, the user does not interact with system software because Pt works in the background.
- 4. 3/m s/w can hun independently It provides platform for hunning application S/Ws.
- 5. Some exs of s/m 8/ws are compiler, assembler, interpreter, debugger, driver etc.

# ⇒ Different System Software

# Application Software

Application slow is used by ever to perform specific task.

Application slws are installed according to user's requirements.

In general the user interest. with application Slws.

Rein independently. They can't hun without the presence of shows slw.

Some exs. of explication, S/Ws are word processed we b browser, medica player etc.

Assembler : A computer will not understand any program whiten in language, other than its muchine language. The programs written in other languages must be translated in to the machine language. Such translation is performed with the help of SIW.

- A program which translates assembly language pgm in to a machine language program is called an assemble

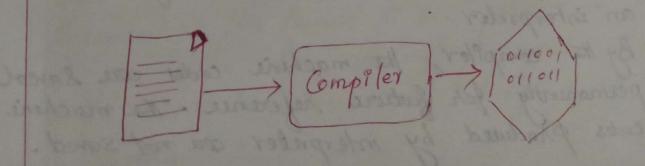
If an assembler which runs on a computer and produces the machine codes for the Jame computer then It is eatled self assembler or resident assembler.

If an assembler that huns on a computer and produces to machine codes for other computer then It is called

Cross Assembler.

Desemblers are further divided in to two types:
One pass Assembler and Two Pass Assembler.

- One pass assembler is the assembler which ourigns the memory addresses to the variables and translates the Source Code in to machine code in the first pass simultaneously.


- A Two pass assembles is the assembler which reads
the source code twice. In the first pass, if read
all the voorsables and assigns them memory addresses, in the se cond pass, if reads the source code and translates the code in to object code.

Compéler : - It is a program which townslates

a hégh level language program is to a machine

language program.

Typically, from high level source code to low level machine code of object code.



A compiler is more intelligent them an assembler.

It checks all kinds of errors. But Its program hun time is more and ounpies a larger poort of the memory. It has low speed. Because a compiler goes to rough a the entire program and then translates the entire program in to machine and the translates the entire program in to machine and produce the machine and so It compiler runs on a computer and and produce the machine and so Self compiler on resident compiler.

If a compiler runs on a computer and produces the machine codes for the same computer and produces the machine codes for the other computer then it is known as a cross compiler.

Loterpheler & — An in-terpreter is a program who translates statements of a program into a machine code. It translates only one statement of program, translates it and executes it. Then It reads the next statement of the of the program again translates it and executes it. In this way it proceeds further tell all the statements over translated and executed.

On the other hand a compiler goes through the entire program and then translates the entire promin to machine codes.

an interpreter.

By the compiler, the machine codes are saved permanently for furtione reference. The machine codes produced by interpreter are not saved.

An Interpreter is a small program as companed to complex. It occupies less memory space, so It can be used in a smaller system which has limited memory space.

Linker & - In highlevel languages, some built in header files or libraries are stored. These libraries are predefined and these contain basic functions which are executing the program. These functions were executed for executing the program alled Linker. The linker does not find a library of a function than of linker does not find a library of a function than of informs to compiler automatically more the linker as the last step in compiling a program.

The also links the user defined functions to the cuer defined libraries.

Smaller Supprograms called modules. Find these modules must be combined to execute the program the phocess of combining the modules is doneby the linker.

Loader: - Loader is a phogram that leads machine codes of a program in to the system memory. In computing, a loader is the part of an OS that is responsible for loading programs. It is one of the exentful stages in the process of starting a process of starting

prepares them for execution. Loading a pgm involves reading the contents of executable file in to memory. Once loading is complete the OS starts the pgm by passing control to the loaded pgm code.

e In many OSs the loader is permanently herident in memory.

## \* Macro Processor.

A mairo processor is a program that copies a stream of text from one place to another, making a systematic set of replacements as it does so.

Macroprocessors over often embedded in other program, Such as assemblers and compilers.

- Some times they are stand-above programs that conte used to process any kind of text-

of files) and scans them for certain keywords.

when a keyword is found, it is replaced by some text. The keyword I text combination is called man.

A general purpose main processor or general purpose preprocessor is a main processor to die not lied to or integrated with a particular language of piece of slw.

· A simple ex is the Clanguage preprocessel

89: ## define MAX 6

Int as:

for (as=0; as < max; as++)

{
...
}

in a c pgm, the c preprocessor reads the firstleric and Stores It as a macro definition when it comes across the later Leference to MAX to the for loop, it replaces et with the macro definition to. The output of the C preprocessors is then fed to the C compiler proper.

\* Text Editors :-

. Albors to Edit a text file

o Common editing features

deleting o replacing pasting , saving , Seaching

o windows OS - Notepad, Word pad, Microsoft wind

· Unin Os - Vi, emacs, jed ; pro

Acts as a primary interface to the computer for all type of knowledge workers" as they compose, organize, study and manipulate computer based information

a user to create and revise a target downent.

Documents vicludes objects such as computerdiagrams text, equations, lables, diagrams, line art sphoto graphs.

In text editors, character dements of the larget tent Editing phase involves - insert, delete, replace, more copy, cut, paste etc. Downest editing process is as Esteractive user any dialogue has four tasks. to Select the part of the target elocument to be newed and manipulated 2. Determine how to formet this view on-line & how to display ? 3. Specify and exente operations that modity to taget downent 4. Opdale the view appropriately.) The task involves triaveling, foldering & formerting. · Traveling - locate the over of interest o Felterry - extracting the relevent subset. o Formatting - Misible representation on a display Editing Buffer Editing Main Memory Newing viewing Output

Depending on the how editing is proformed and the type of output that can be generated, editors can be broadly classified as -

- Time editors: During original creation lines of text are decognised and delimited by end- of-line markers, and during subsequent revision, the line must be expli-eftly specified by line number or by some pattern content. eg. edun editor in early Ms Dos s/ms.
- 2. Stream Editors: Similar to line editor ibut the entire text is treated as a single stream of characters. Hence the location for revision cannot be either specified using line numbers. It, specified by explicit positioning or by using pattern context.

  eg. Sed in Unix / Linux.
- Line editors and stream editors are suitable for text only downersts.
- 3. Screen Editors: These allow the document to be viewed and operated upon as a two dimensional plane, of which a portion may be displayed at a time. Any poston may be specified for display and location for revision can be specified any where with in the displayed poston. eg. Vi, emas sole 4. World processors: prevides additional Jeatenes

contents and choice of fonts, style etc.

5. Structure Editors - These are editors for specific types of documents, so that the editor recognizes the structure syntom of the document being prepared and helps in maintaining that structure syntom.

Debugger: Debugging means locating ( and then removing) bugs is faults in programs.

The most common sleps taken in debugging are to examine the flow of condrol during execution of the program, examine values of variables at different points in the program examine the values of parameters passed to functions and values returned by the functions, examine the function call sequence ete

- · Usually inserts print statements in the program at various chosen points, that prints values of significant variables on parameters, or some may that indicades the flow of control.
- · Using print Statements for clebugging a program is often, not adequate of convenient. For ex. the programmer may want to change the values of certain vorial bles (or parameters) after observing the execution of the program tell some point for a large program of may be difficult to go back to the source program of may be difficult to go back to the source program of may be difficult to go back to the

and renin the program

If phint stadements are placed inside loops, it will produce output every time the loop is ensuited produce output every time the loop is ensuited to overcome several such drawbacks of debugging by inserting extra statements in the program, there are a kind ob tool called debugger that helps are a kind ob tool called debugger that helps in debugging programs by giving the programmer some control over the execution of the program and some means of examining and meditying different program variables during seen time

Devece Drivers

Device drivers are software mudules It al can be plug ged into an Os to handle a particular device. Operating system lakes help from device drivers to handle all I/O devices.

09-

Device deriver is a program that controls a particular type of device that is altached to your computer. There are desire drives for printers, displays, CD-ROM readers, diskkelle drives and so on when you buy an OS, many drives are built in to the product. However, 1st you later key a hew type of device that he OS dedn't anticepale you'll have to install he new device driver. A device deriver exentically converts the more general solutions of the OS to mage

· Device drivers encapsulate device dependent code and implement a standard in terface in such a way that code contains device specific hegister heads | whites.

· Serice driver is generally written by the devices manufacturer and delivered along with the devices device on a CD-ROM.

A derice donver performs the following jobs

- · To aught the request from the device independent
  - o Making Sweethat the request is executed Successfully.

An operating system program that acts as an interface between the user and the computer hard ware and controls the execution of all kinds of programs.

Jollowing are the some of important functions of an os management of processor management.

o /) once management

- · He management
- o Control over system performance
- · Job accounting
- · Error detecting ands
- · Coordination to other stor 2 users.

The Simplified Instructional Computer (SIC)

SIC has been designed to illustrade the most commonly encountered hardware Jeatures and concepts, whole avoiding most of the idiosyncrasies that are found in head machines.

- SIC comes in two versions: The standard model and an XE version (XE stands for "extre equipment, or extre expensive). The two versions have been designed to be apward compatible - is an object for the standard SIC will also execute in properly one SIC/XE system.

SIC Machine Architecture:

Memory:

Memory consists of 8 bit bytes; any three conseculeve bytes form a word (24 bits)

- All addresses on SIC core byte addresses, words one

| leason of their lowest                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------|
| addressed by their location of their 10 west                                                                              |
| mumbered byte the                                                                                                         |
| by les in the computer                                                                                                    |
| Registers.                                                                                                                |
| The are 5 registers all of which have special                                                                             |
| uses. Each register is 24 bits in length                                                                                  |
| Mnemonte Number Special Use                                                                                               |
| A O Accumulator; used for asithmetic operations.                                                                          |
| X I Index register; Used for addressing                                                                                   |
| L. 9 Linkage register. He Jump to Sub                                                                                     |
| Proutine (JSUB) instructions the reduces add in this reg.                                                                 |
|                                                                                                                           |
| Glad of the next inst n to be fetched                                                                                     |
| Status herd; contains a variety                                                                                           |
| SW 9 Status word; contains to be fetched Status word; contains a variety of infn; including a condition (de Data formats. |
| Integers one stored ous 24 bit binony numbers                                                                             |
| 215 complement representation is used for regular                                                                         |
| values.                                                                                                                   |
| Characters are Stored using their of                                                                                      |
| codes. Floating point hoodware on is not                                                                                  |
| codes. Floating point hoodware on is not available in the Standered version of sic.                                       |
| Instruction Formats:                                                                                                      |
| All machine instructions on the standard in                                                                               |
| Sfor of SIC have the following 24 bit boomet                                                                              |

oprode |x| address The Alay bot x is used to indicate indexed - addre story mode Addressing Modes There are two addressing modes available, inclicated by the setting of the x bot in the instruction. Mode Indication Target address calculation TA = address Direct x = 0 Indexed x =1 TA = address + (x) -Paranthesis are used to indicate the centents of a registe or a memory location. For ex, (X) represents the contents of register X Direct Addressing mode EX: LDA TEN 0000 0000 0 000 0000 0000 Effective address (EA) = 1000 content of the address 1000 is traded to Accumulation Indexed addressing mode

EX; STCH BOFFER, X

10101 0100 | 1001 0000 0000 0000 ]
5 4 1 0 0 0
0βcerde X BUFFER

Effective address (EA) = 1000 + [X]

= 1000+ Correct of the index regx

## Instruction set:

SIC provides a basec set of instructions that are sufficient for most simple tasks. These include \* Load / Store registers: LDA, LDX, STA, STA, STA, STA,

- + Integer arthmetic: ADD, SUB, MUL, DIV.

  All involve register A and a word is memory,

  result stored in register A.
- \* COMP: Comparer value in register A with a nord in memory
- \* Sets a condition code CC to indicate the result CL, = , or >).
- \* Conditional Jump Instanctions:

  The JEQ, JGIT: can lest the setting of cc , and jump accordingly

JSUB - jump to the Subvoulance, placing the relieves address in Legistee L.

RSUB - referens by jumping to the address contained in register L.

## Input and Output:

- Input and octput are performed by transfering I byte at a time to or from the rightmost 8 bits of negisters.

   There are three Ilo instructions, each of which specifies the device lade as an operand.
  - The test device CTD) instruction tests whether the addressed device is ready to send on receive a byte a data. The condition code is set to indicate the Result of this test.

-A setting of means the device is ready to sense of receive & = means device is not ready.

- A program needing to transfer data must wait until the device is ready, then execute the Read Data (RD) or .

  Write Data (WD).
- of data to be read or wretten.

SICIXE Machine Architecture: Memory The maximum memory available on a SICIXE System is I megabyte (2° bytes). This increase leads to a change to instruction formats and addressing mode, Registers : The following additional hegisters are provided by sig Mremonic Number Special rese. B 3 Base register used for addressing Greneral wordering kegister - no spelle Creneral working hegister - no spend Hoating point accumulator (4861) Data Formats: SIC/XE provides the same data formats as the Standard version. In addition then is 48 bit of bating point data type with the Jollowing Jamest: 15/exponent | fraction The fraction is interpreted as a value between 081 for normalized floating point numbers, the high

Older bit of the braston must be I The exponent is interpreted as an emigned binary number blue 0 and 2047 It he exponent has value e and fraction has value of the absolute value of the number represented as,

f \* 2 (e, - 1024)

- The sign of the floating point number is indicabed by he value of 5 ( 0 = positive, 1 = regative). A value of zero is represented by setting all 5715 Circluding sign, exponent, fraction ) to 0

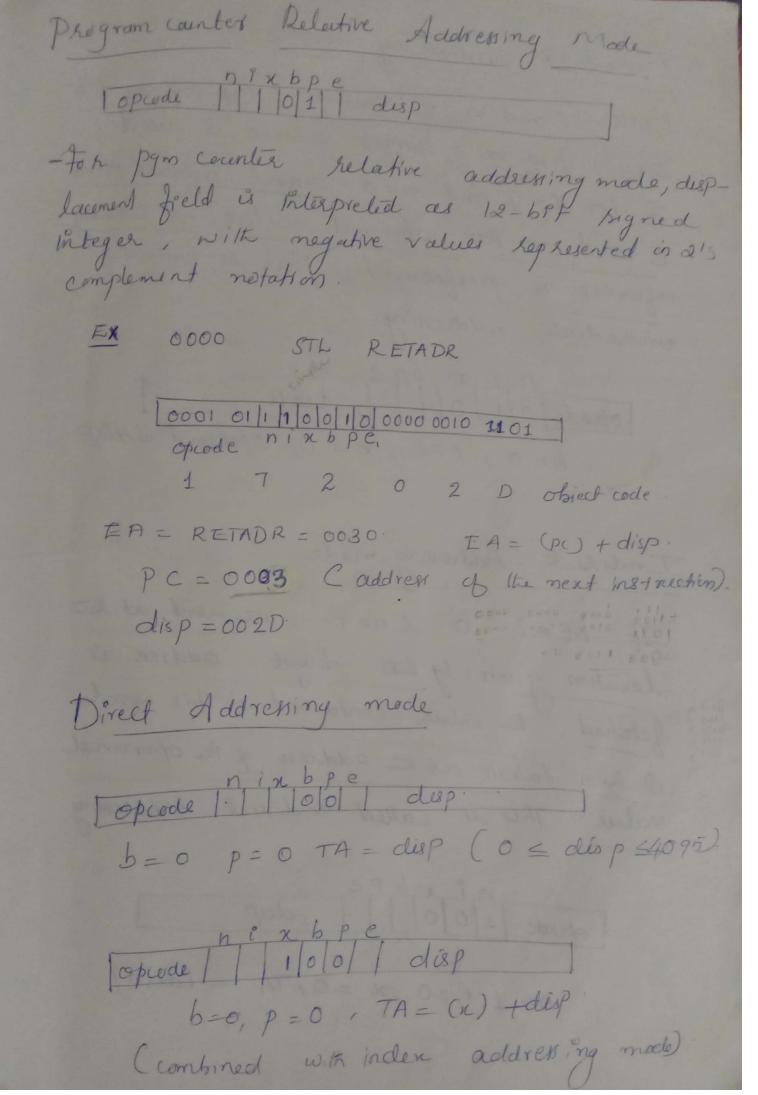
Instruction formuts: -

The larger memory available on SIC-1 XE means that on address field will no longer for into a 15 bit field, thus the instruction format used on the Standard version of SIC nolonger suitable

- SIC/XE includes the following instruction formuts

Format 1 (1 by ( ):

R SUB (Return to Scib opeode 0100 1100


memory at all a forest 1 82 denot reference BIF e distinguishes between format 3 &4 1 op | 81 | 82 ] Formal 2 (26yla): Ex: comp A, s (compare the contents of registe 1010 0000 0000 0100 2 byles - Object code A 0 0 Ex: LDA #3 (Load 3 to Accumulated A). opude nixbpe 0 0 3 - Object code Format 4 (4byles): - [ op ]n|1|2|b|p| et address Ex: + JSUB RDREC (Jump to address, 1036). 10100 10/1/10/0/0/10000 0001 0000 0011 0110 opude hexbpe 0 1 0 3 6 Objectede 4 3 1

o kach format has a different representation inmensing Bets formed 3 & 4 hove Sx, Hay values in the m, consisting 6 boths of & bog values & 12 boths of desplace Frank 4: Only valid on SICIXE machines, consist of . The instruction formats provide a model ser memory Format 13 Consists of 8 6715 of allocated menony to Formatz: Consist of 6 bills to stone on witsuther Ingram counter relative flag en general of The 31C/XE has three vistacethn formuls and the formata: Consest of to bit of allocated money to Stone 8 blts of instructions & too Extra Equipment add-on includes a fault. Formed 4 Prostaution flag. or: Indirect addressing flarg.

of: Immediate addressing flarg.

ox: Indirect addressing flarg. Base address relative flowy store instruction and date monugenest. of the following & lay 696. · x ·

of a 12 bit desplace ment, stores a 20 bit address Addressing Modes: Two new relative addressing modes one anatherble for use with instructions assembled using format 3. Target address calculation mode indiation TA = (B) + disp (0 = disp = 40) Baserelative 6 = 1, P=0 TA = (PO + disp. (-2048) Program counter b=0, P=1 relative desp < 2047) Base relative Addressing mode 12 b 8+ 6 ng xbpe opcode 1 1 10 1 disp EX: 1056 STX LENGTH 0001 00 11/0/10/0 0000 0000 0000 opcode nixbre 1 3 4 0 0 0 objectcode EA = LENGTH = 0033 EA = d3p+[B]. [B] = 0033 disp = 0. The content of the address 6033 is leaded to the Index registes X



It is feefermed. This is called when addressing

The period as the operand value, no memory reference is performed. This is called the investing

In a b p c

[opcode | o | 1 | o | 1 | desp.

In a o, i-1, x = 0, operand = disp.

Indirect Addressing mode

It bit = i = 0 & n=1, the word at the lecation given by the foreget address is fetched; the value contained in this word is this word is the operand value. This is called indirect addressing

prode 12/0/0/11 desp

n=1,i=0,x=0,TA = (dusp)

Simple Addressing mode Toprode 10/0/1/1/1 disp e o, n = 0, TA = bpe + disp (SIC sta) opiede opiede + n+l = SIC Ald opiede 86t off bits il on a both o as both 1, the target address is taken as the location of the operand Al will refer to this as simple addressing Indexing cannot be used with immediate of indirect addressing modes. Toprode | 1 | 1 | 1 | 1 | dup | l=1, n=1 TA = disp (SIC/XE sla) Instruction Set SICIXE provides all of the instructions that are available on the stendard version In addition, there are instructions to load & Store the new registers (LDB, STB, etc) -To perform flowling part withmetic obesations ADDF, SUBF, MULF, DIVF - Registermore - RMO - Register to Register as to metic operations

ADDR ISUBR, MULK, LI · Supervesor call : 540 Executing this instruction generales on interrupt that can be used for communication with the Os Input and Output The I 10 instructions for SIC are also civailable on sic/xE. There are Ilo channels that can be used to perform chart and output while the CON is executing the other instructions. - This allows overlaping of computing & Ilo, resulting in more efficient 8/m operation. The instructions - SIO, TIO & HI O are used to Start, Test and Halt the operation of I to Channels. SIC Programming Examples fig 12 Contains exs of data movement operations for SIC and SIC/XE: There are no memory to mem more instans, thus all data merement must be done using registers In the fig 1.2a, a style word is moved by

leading of into register A and then storing the segister at he dearlest destination.

Register at he dearlest destination.

In the next line, a single byte of data is more character. In the instanctions of clear using the instanctions of clear using the instanctions of state using the character. These instanctions of bit byte stock of some characters. These instanctions of bit byte stock of some of bits in reg. A are not by loading & stocker bits in reg. A are not affected.

Fig - 1-2(a) Shows 4 different ways of defining
Storage for data items is the SIC assembles language
The Statement I word heserves one word of
Storage

Which is initialized to a value defined
is the operand field of the Statement.

Thus the word Statement is fig 12a defines
a data aread leabeled FIVE whose value is
initialized to 5:

\* The Stalement RESW reserves one or more words of Storage for use by the pgm. for eg: the RESW Statement in fig 1:2a defines one word of storage labelled ALPITA, which will be used to hold a value generaled by the program:

The State ments BYTE and RESB perform similar storage definition functions for data rtems that one characters vis lead of cards

# SIC Programming Example (Fig 1.2a)

#### Data movement

|                              | LDA                          | FIVE           | load 5 into A                                                                          |
|------------------------------|------------------------------|----------------|----------------------------------------------------------------------------------------|
|                              | STA                          | ALPHA          | store in ALPHA                                                                         |
|                              | LDCH                         | CHARZ          | load 'Z' into A                                                                        |
|                              | STCH                         | C1             | store in C1                                                                            |
| ALPHA<br>FIVE<br>CHARZ<br>C1 | RESW<br>WORD<br>BYTE<br>RESB | 1<br>5<br>C'Z' | reserve one word space<br>one word holding 5<br>one-byte constant<br>one-byte variable |

In fig-1.2 a CHAP

LE a I byle date

le m whose value

Le initialized to

the Character 2's

C 1 is a 1-byle

vous able with me

initial value.

| SIC/XE | Fg. 1.  | 26 |
|--------|---------|----|
| DICIVE | version |    |

| LDA     | #5    |
|---------|-------|
| STA     | ALPHA |
| LDCH    | #90   |
| STCH    | C1    |
| 279-100 |       |

ALPHA RESW 1

Store in ALPITA

Load ASCII Code for Z' into reg A

Store in character variable C1.

one-byte variable

- The instructions shown in fig 1 2(a) also work on SIC/xzhowever they would not take advantage of the mere advanced herdware features available.

The Ex 1.2 b, the value 5 is loaded in to register the usery immediate addressing. The operand Iteld for this vist suction contains the flag # lubrich specifies immediate addressing) and the data value to be loaded dimilarly the character "21 is placed in to reg. A by using impredicte addressing to load the value 90, which is the decimal value of the ASCII look that is used internally to represent the character '21.

# SIC Programming Example (Fig 1.3a)

## Arithmetic operations: BETA = ALPHA+INCR-1

| · Arith                                | metic of                             | Gradia                                   |                       |  |
|----------------------------------------|--------------------------------------|------------------------------------------|-----------------------|--|
| 7                                      | LDA ADD SUB STA LDA ADD SUB SUB STA  | ALPHA INCR ONE BETA GAMMA INCR ONE DELTA |                       |  |
| ONE<br>ALPHA<br>BETA<br>GAMMA<br>DELTA | WORD<br>RESW<br>RESW<br>RESW<br>RESW | 1<br>1<br>1<br>1                         | constant<br>variables |  |

INCR

#### SIC/XE Programi

|                                         | LDS<br>LDA<br>ADDR<br>SUB<br>STA<br>LDA | INCR<br>ALPHA<br>S,A<br>#1<br>BETA<br>GAMMA |
|-----------------------------------------|-----------------------------------------|---------------------------------------------|
|                                         |                                         |                                             |
| ALPHA<br>BETA<br>GAMMA<br>DELTA<br>INCR | RESW<br>RESW<br>RESW<br>RESW<br>RESW    | 1<br>1<br>1<br>1 (36)                       |

Fig. 1. 3 (a) Shows exs of arithmetic metruchons for SIC.

All arithmetic operations are performed using veg A, with

the result-being left in register A. Thus this sequence

of instructions stores the value (ALPHA + INCR - 1) in

BETA and the value (GAMMA + INCR-1) in DELTA.

# SIC Programming Example (Fig 1.4a)

· Looping and indexing: copy one string to another

| MOVECH | LDX<br>LDCH<br>STCH<br>TIX<br>JLT | ZERO<br>STR1,X<br>STR2,X<br>ELEVEN<br>MOVECH | initialize index register to 0 load char from STR1 to reg A add 1 to index, compare to 11 loop if "less than" |
|--------|-----------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| STR1   | BYTE                              | C'TEST                                       | STRING'                                                                                                       |

WORD

ELEVEN WORD

ZERO

The Index register X is initialized to 2 zero before

the loop begins. Thus
during the first execution
of the loop, the larget
address for the LDCH
instr well be the
address of the first
by to of STR1.

STATE into well store the character being copied into the first byte of STRZ. The next inst n, TIX, performs two Junctions. First it adds I to the value in register X and then It companes the new value of reg. X to the value of the constant rulues.

## SIC/XE Programming Example (Fig 1.4b)

· Looping and indexing: copy one string to another

| MOVECH       | LDT<br>LDX<br>LDCH<br>STCH | #11<br>#0<br>STR1,X<br>STR2,X | initialize register T to 11<br>initialize index register to 0<br>load char from STR1 to reg A<br>store char into STR2 |
|--------------|----------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|              | TIXR<br>JLT                | T<br>MOVECH                   | add 1 to index, compare to 11 loop if "less than" 11                                                                  |
| STR1<br>STR2 | BYTE<br>RESB               | C'TEST                        | STRING'                                                                                                               |

the condition come is set to indicate the result of the same functions if the condition code is set to Tenth.

Thus the JLT cause a jump back to he

beginning of the loop if the new value in Reg X is less than 11. During the secund execution of the loop, reg. X will contain the value 1. Thus TA box the LDCH -> 2nd byte of STR I. & TA for STCH -> 2nd byte STR The TIX inst nill again add I to the value in reg X, I the loop will continue in this way until all 11 by tes have been copied from STRI to STR2.

Tig 1.4 b Same loop for SIC IXE. The difference is that inst n TIXR is used in place of TIX.

TIXR heries like ITIX, except that the value wed for comparison is taken from another reg.

( neg T), not from my. This makes loop more efficient:

- Immediate addressing is used to initialize leg T to the value 11 & to initialize leg - x to 0.

> Fig 105 centain another ex. of indowing and boping. The Variables ALPHA, BETA & BLAMMA are arrays of 100 wonds each.

#### SIC Programming Example (Fig 1.5a)

|       | LDA  | ZERO#    | mitialize index value to 0          |
|-------|------|----------|-------------------------------------|
|       | STA  | INDEX    |                                     |
| ADDLP | LDX  | INDEX    | load index value to reg X           |
|       | LDA  | ALPHA, X | load word from ALPHA into reg A     |
|       | ADD  | BETA, X  |                                     |
|       | STA  | GAMMA, X | store the result in a word in GAMMA |
|       | LDA  | INDEX.   |                                     |
|       | ADD  | THREE    | add 3 to index value                |
|       | STA  | INDEX    |                                     |
|       | COMP | K300     | compare new index value to 300      |
|       | JLT  | ADDLP    | loop if less than 300               |
|       |      |          |                                     |
|       |      |          |                                     |
| INDEX | RESW | 1        | many with the total                 |
| ALPHA | RESW | 100      | array variables-100 words each      |
| BETA  | RESW | 100      |                                     |
| GAMMA | RESW | 100      |                                     |
| ZERO  | WORD | 0        | one-word constants                  |
| THREE | WORD | 3        |                                     |
| K300  | WORD | 300      |                                     |

#### SIC/XE Programming Example (Fig 1.5b)

| ADDLP | LDS<br>LDT<br>LDX<br>LDA<br>ADD | #3<br>#300<br>#0<br>ALPHA,X<br>BETA,X | load from ALPHA to reg A       |
|-------|---------------------------------|---------------------------------------|--------------------------------|
|       | STA                             | GAMMA,X                               | store in a word in GAMMA       |
|       | ADDR                            | S,X                                   | add 3 to index value           |
|       | COMPR                           | X,T                                   | compare to 300                 |
|       | JLT                             | ADDLP                                 | loop if less than 300          |
| ALPHA | RESW                            | 100                                   | array variables—100 words each |
| BETA  | RESW                            | 100                                   |                                |
| GAMMA | RESW                            | 100                                   |                                |

o The task of the loop is to add logether the corresponding elements & FILPHA and BETA Storing the results in the elements of GAMMA Fig 1.5(a) - defore a Variable INDEX that holds the value to be used for indexing for each o-leaation of the leop. Thus INDEX Should be o for the Startingof the loop (ie first itection ) 13 tes se condition 250 on The first insto in the body of the loop

douds the current value of INDEX is to reg. X, it can be used for the TA calculation.

The next three instris is the loop head a word from BETA, & ALPHA, add the corresponding word from BETA, & Store the result is the corresponding word of Gramma. The value of INDEX is then loaded to to register A, incremented by 3. and stored back is to MDEX.

The new value of INDEX is present in reg. A.

This value is then compared to 300 (length of the areays in by tes) to determine whether are not to

terminate the loop. If he value of MDEX is less than 300, then all byles of the arrays have not yet been processed in that case, the JLT instruction causes a jump back to the beginning of the hop loop, where the new value of INDEX is louded on to sey X.

This loop in fig 15(b) got SIC/XI more ellicant. The index value is kept permanently in regx.

The amount by which to increment the index value 13) is kept in reg. S, like reg-to reg ADDR inst is used to add this increment to reg. X.

The value 300 is kept in reg. T, the inst of COMPR is used to compare regs. X & T in order to decede when to tesminate the loop.

Lead a 100 byte second from an enjut dead a 100 byte second from an enjut derice in to memory. The sead operation is this ex. Is placed in a subroutine. This subroutine is called from the main program by using the JSUB (Jump to Subroutine) instruction. Dit the end of the subsoutine (tere is an RSUB (Rettern from Subroutine) instruction, which returns central to the instruction that Jollows the TSUB.

|        |                           | THE PARTY NAMED IN               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|---------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | JSUB                      | READ                             | CALL READ SUBROUTINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | :                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| READ   | LDX                       | ZERO                             | SUBROUTING TOREAD 100-BYTE REGARD INITIALIZE INDEX REGI. TO D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RLOOP  | TD                        | INDEV                            | TEST INPUT DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | JEQ RD STH TIX JLT RSUB : | RLOOP INDEV RECORD, X K100 RLOOP | LOOP IF DEVICE IS BUSY  READ ONE BYTE INTO REG A  STORE DATABYTE INTO RECORD  ADD 1 15 INDEX & COMPARE 6/100  LOOP IF INDEX IS LESS THAN 100  EXIT FROM SUBROUTINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| INDEV  | BYTE                      | X'F'                             | INPUT DEVILE NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RECORD | RESB                      | 100                              | 100-BYTE BUFFER FOR INDUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ZERO   | WORD                      | 0                                | ONE WORD CONSTANTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                           | 1                                | The second secon |
| k 100  | MORD                      | 100                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### Fig (a) - 17 (a)

#### SIC/XE Programming Example (Fig 1.7b)

|                 | JSUB                                                         | READ .                                      | CALL READ SUBROUTINE                                                                                                                                                                                                                                                                    |
|-----------------|--------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| READ RLOOP      | LDX<br>LDT<br>TD<br>JEQ<br>RD<br>STCH<br>TIXR<br>JLT<br>RSUB | #0 #100 INDEV RLOOP INDEV RECORD, X T RLOOP | SUBROUTINE TO READ 100-BYTE RECORD INITIALIZE INDEX REGISTER TO 0 INITIALIZE REGISTER T TO 100 TEST INPUT DEVICE LOOP IF DEVICE IS BUSY READ ONE BYTE INTO REGISTER A STORE DATA BYTE INTO RECORD ADD 1 TO INDEX AND COMPARE TO 100 LOOP IF INDEX IS LESS THAN 100 EXIT FROM SUBROUTINE |
| INDEV<br>RECORD | BYTE<br>RESB                                                 | X'F1'                                       | INPUT DEVICE NUMBER<br>100-BYTE BUFFER FOR INPUT RECORD                                                                                                                                                                                                                                 |

While the sequence of instructions for significant to drude BETA by OFAMMA and to stop
integer quotient on PAPHA premisdes in DEL

LDA BETA

LDS GRAMMA

DIVR S,A & DIVR 11,12 12 424 81

STA ALPIHA

MULR S,A 12 4 12 4 11

LDS BETA

SUBR A,S 12 4 12 4 11

STS DELTA

ALPIHA RESW1

BETA RESW1

GAMMA RESW1

DELTA RESW1

2) Let NUMBERS be an array of 100 words. White a sequence of instructions for SIC & SIC/X I to Set all 100 elements of the array to 1.

SIC LDA ONG

STA INDEX

LOOP LOX INDEX

LOOP ONG

NOA ONG

STA NUMBER, X

LOA INDEX

ADD THREE

STA INDEX

COMP K300

JLT LOOP

INDEX RESW 1

NUMBER RESW 100

ONE WORD 100

K300 WORD 100

THREE WORD 3

SIC/XE

LD3 #3

LDT #300

LDX #1

LOOP LDA #1

STA NUMBER, X

ADDR S,X

COMPR XIT

JLT LOOP

NUMBER RESW 100

NUMBER PESW 100

## MODULE IT.

Basic Functions of Assembler, Assembler output format - Header, Text and End Records -Assembler data It suchires, Two pass Assembler algorithm, Hand ownerby of SIC/XE program, Machine dependent assembler features.

# Basic Functions of Assembler 5-

Fundamental functions that any assembler must perform, such as translating mne monic operation codes to their machine language equivalents and assigning machine address to symbolic labels used by the programmer.

o The feature and design of an assembler depend heavily upon the source language of translates and marchine language it produces.

Source program
o Mnemonic opcode
osymbol

Assembler

Object code

Assembler directives are fraudo instructions

They provide instauctions to the assembles Ptself.

They are not translated in to machine operation code.

SIC assembles developes

START: Specify name and starting address for the program.

END: Indicate the end of the Source program (aptionally) specify first encutable instruction in the program.

BYTE: Grenevate character or heraclecimal constant occupying many bytes as needed to represent the constant.

NORD: Generalt one-word intéger constent

RESB: Reserve the indicated number of bytes for a data area.

RESW: Reserve the indicated neember of words for a data area.

The program contains a main Loudine that

heads he cords from an imput device and

copies them to an output device.

The main Loutine calls subrocotine RDREC

to read a Lecord in to buffer and subrocotine

WRREC to write the record from the

buffer to the aetput device. Lach sub

houtine must transfer the record one

character at a time because the only Ilo instructions available are RD and WD. The buffor is necessary because the 10 rates for the two devices, such as disk and a slow printing les min al, may be very different. The end of each receid is marked with a nell chalacter (heradecimal oo). It a record is longer than the length of the buffer (4096 bytes). only the first 4096 bytes are copied. - The end of the file copied is indicated by a zero length record. when the end of file is detected, the pgm whiles I OF on the output device and les minales by executing an RSUB instruction. We assume that this pym is called by the OS cising ISUB instruction; their The RSUB NIII return control to the OS

| COPY<br>FIRST<br>CLOOP              | START SIL JSUB LDA COMP JEC JSUB             | 1000 RETADR ADREC ' LENGTH ZERO ENDFILL WEREC                | COPY FILE FROM INPUT TO OUTPUT SAVE RETURN ALDRESS READ INPUT RECORD TEST FOR EOF (LENGTH & 0)  EXIT IF EOF FOUND WRITE OUTPUT RECORD |
|-------------------------------------|----------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Forward reference                   | LDA STA STA STA                              | CLOOP<br>EOF<br>BUFFER<br>THREE<br>LENGTH<br>WKREC<br>RUTADR | LOOP INSERT END OF FILE MARKER  SET LENGTH = 3  WRITE BOF GET RETURN ADDRESS RETURN TO CALLER                                         |
| EDF THREE ZERO RETADR LENGTH BUTTER | BYTE<br>WORD<br>WORD<br>RESW<br>RESW<br>RESE |                                                              |                                                                                                                                       |

| 110<br>115<br>120<br>125<br>130<br>135<br>140<br>145<br>150<br>165<br>170<br>175<br>180<br>185<br>190<br>195 | RDREC RLOOP EXIT INPUT MAXILEN | SUBROUTE LDX LDA TD JEQ RD COMP JEQ STCH TIX JLT STX RSUB BYTE WORD | ZERO ZERO ZERO ZERO INPUT RLOOF INPUT ZERO EXIT BUFFER, X MAXLEN RLOOF LENGTH  X F1' 4096 | CLEAR LOOP COUNTER CLEAR A TO ZERO TEST INPUT DEVICE LOOP UNTIL FEADY READ CHARACTER INTO R TEST FOR END OF RECOR EXIT LOOP IF EOR STORE CHARACTER IN EU LOOP UNLESS MAK LERGI HAS BREN REACHED SAVE RECORD LEAGTE RETURN TO CALLER CODE FOR INPUT DEVICE |
|--------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| THE RESIDENCE |        |              |                                        |                                     |  |
|---------------|--------|--------------|----------------------------------------|-------------------------------------|--|
| 200           |        | SUBROU       | SUBROUTINE TO WRITE RECORD FROM BUFFER |                                     |  |
| 205           | WRREC  | LDX          | ZERO                                   | CLEAR LOUP COUNTE                   |  |
| 215           | WLOOP  | JEO          | OUTPUT WLOOP                           | LOOP UNTIL READY                    |  |
| 220           |        | LDCH         | BUFFER, X                              | GET CHARACTER FRO                   |  |
| 230           |        | WD           | CUTPUT                                 |                                     |  |
| 235           |        |              |                                        |                                     |  |
| 240           |        | JLT          | WLOOP                                  | HAVE BEEN WRITE                     |  |
| 50            | OUTPUT | RSUB<br>BYTE |                                        | RETURN TO CALLER<br>CODE FOR CUTPUT |  |
| 55            |        | END          |                                        |                                     |  |
|               |        |              |                                        |                                     |  |

Simple 510 Assembles object code Source Statement 141033 RETADR 15 1003 CLUOP JSUB RDREC OThe column headed La gives the machine address Cin hexadecemal) for each part of the assembled Pgm. The pgm starts at address 1000. The translation of downer pgm to object code requires to accomplish the following functions. 1. Convert Moremonie operation codes to their machine lunguage equivalents - eg . translate STL 10 14 (lune 10). 2. Convert Symbolic operands to their equi valent machine address eg. tremslate RETADR to 1033 (line 10). 3. Brield the machine instructions in proper format Source pgm is to their internal machine repre Sentations -eg. translate Fet le 4545-46. 5. Write the object program & assembly listing

All of these functions except neumber 2 can easing the be accomplished by the sequential processing of the source program, one line at a time. The translation of addresses, however presents a presents a problem. Consider the statement

10 1000 FIRST STL RETADR 141033

This instruction contains a forward reference - le a reference to a leabel CRETADRI that is defined later is the pregram:

If we attempt to translate the pgm line by line, well be unable to process this statement because we do not know the address that well be cassigned to RETADR.

passes over the source program.

2 passes

First pass: Scan the source program for label definitions and assign addresses E such as Loc column in fig I become pass: perform actual teconslation

In addition to translating the instructions of the Source program, the assembler must process statements called assembles directives (or pseudo-instruchons). State ments are not translated into machine instructions. Instead they provide instructions to the assembler itself of inally the assembler must write the generaled Object code on to some output device. This Object program will later be loaded in to memory for excention. a The Simple object program format we use contains three types of records. Header Header record: contains the program name. Starting address and length. Test record: contain the translated (ie machin code) instructions and data of the program, together with an indication of the address where

these are to be loaded.

The End record: marks the end of the object

program and specifies the address in the program

where execution is to begin. (This is to begin.)

I have execution is to begin. End Stationers.

from the operand of the program's END Stationers
If no operand is speed fred, the address of the
first executable vista withour is used.).

The formats we use for these records are as follows: The details of the formats

(as follows: The details of the formats

(column numbers, etc.) are contained in these

instruct information contained in these

records must be present in the object pym.

Header record:

Col. 1 1+

Col. 2-7 Program name

Col. 8-13 Starting address of the Object.

program (hexadecimal).

col. 14 - 19 Length of the object program
in bytes (he rade aimal).

Text record:

Col. 1 T

col. 2-7 Starting address for object code in this record Chence decimal)

Col. 8-9 Length of Object code in this record in bytes (Lenadecimal)

Col. 10-69 Object code, represented in hereadecimal cimal (2 columns per byte of code).

End Record

Col. 1 E

Col. 2-7 Address of first executable instruction

in doject program Chenadecimal).

fry. object code .

Greneral description of the functions of the lies pares of simple assembler.

pass & (define symbols):

- 1. Assign addresses to all statements in the program
- 2. Save the values Caddresses) assigned to all latels for is use in Pass 2.
- 3. Perform some processing of assembler directives This includes processing that affects address assign ment, such as determining the kingth of data are as defined by BYTE, RESW, etc).

Pass &: Cassemble instructions and generale Object program)

- 1. Assemble instructions Ctranslating operation codes and looking up addresses)
- 2. GEnerali data values defined by BYTE, WORD, etc
- 3. Perform processing of assembler directives not done during Pass1
- 4. Write the object program and the arembly listing

# Assembler Data Structures and Two pass

Algorithm: -.

- Simple assembler cises two major internal data datastructures:
  - o Operation code Table (OPTAB)
  - · Symbol Table (SYMTAB)
- OPTAB is used to lookup mnemonic operation codes. and translate them to their machine language equevalents.
  - SYMTAB is used to store values (addresses). asigned to labels
- Location Counter LOCCTR This is a vornable that is cused to help in the assignment of addresses.

LOCCTR initialized to the beginning address specified in the START statement. After each source statement is processed, the length of the assembled instruction or data area to be generaled is added to LOCCTR.

LOCCTR - LOCCTR + (instruction length).

The current value of LOCCTR gives the address to the label encountered.

The Operation Code Table must contain the mnemonic operation code and Pts machine language equivalent. During pass 1, OPTAB is used to look up and validate operation codes in the Source program. In Pass 2, At is used to translate the operation codes to machine language.

- · In SIC assembles, both of these processes coceldbe done together in either pass 1 or pass 2.
- o OPTAB is organized as a husb table, with mnemonic operation code as the key. [Hash table provides fast retneval with a minimum of Searching).
- rosmally added or deleted from the

The Symbol table (Synstab) Includes the name and address for each label in the Source program, together with flags to indicate ever conditions (e.g., a symbol defined in two different places).

This table may also contain other information about

the data area or instruction labeled - for eg.

Pts type or length

Scanned with CamScanner

During pass of the assembler, labels are entered in to SYMTAB as they are encountered in the source pgm, along with their assigned addresses from LOCCTR). During passe, symbols used as operands are looked up in SYMTAB to obtain the address to be inscribed in the assembled instructions · SystaB is usually organized as a hashtable for efficiency of insection and refrieval. SYSTAB is used heavely throughout the assembly, cone Should be taken in the selection of a hashing function o programmers Often select many labels that have 3 imilar characteristics - fox ex, labels that start Or end with the same characters (like Loops, Loops, · 50 the hashing Junction resed perform well with duch non-kandom kegs.

Scanned with CamScanner

It is possible for both passes of the assembler to read the original Source program as inputitioning.
There is a certain information (Such as location Counter values and esses flags for statements that can communicated between two passes For this reason, pass I usually writes an intermediale file that contains each source Statement together with its assigned address, ever indicators, etc. This file is used as the isput to pass 2. This working copy of the Source program can also be used to retain the results of certain operations that may be performed during pass 1. (Such as scanning operand feld for symbols & addressing flags), so these need not be performed again decring pass 2. Similarly pointers in to CPTABS and SYNTAB may be retained for each operation code Isymbol used. This avoids he need to repeat many of the table - Searching operations.

```
begin
  read first input line
  If OPCODE = ISTART' then
    begin save # [ OPERAND] as starting address
         initialize LOCCTR to Steering address
         write line to intermediate file
         read next input line
    end { if START }
     initialize LOCCTR to O
      while opcode $ 'END' do
       begin of this is not a comment line then
          begin if there is a symbol in the LABEL field then
            begin Search SYMTAB for LABEL
                 if found then
                    Set error flag (duplicate symbol)
                 else insert (LABEL, LOCCTR) in to SYMTAB
                end fif symbol?
            Search OPTAB for OPCODE
                  add 3 & instruction length 3 to LOCCTR
           else if OPCODE = ' NORD' TEN
                  add 3 to LOCETR
            else if OPCODE = 'RESW' then
                  add 3x # LOPERAND] to LOCETR
            else if opcode = 'RESB' HED
                  add # COPERAND ) to LOCLIER
             else if OPCODE = BYTE / Iten
              begin find length of worstant is by les
               and fif BYTEZ
            else
set error glag (invalid operation code)
           end { if not a comment }
       write line to intermediate
          head next input line
      end & while not IND?
     write last line to interreduct file
     Save (LOCCTR - Starting address) as program length
```

Passi

```
Pan2
  begin read first input line of from intermediate file 3
      if OPCODE = ISTART ! Then
      begin write listing line
            read nort input line
      end of START?
      Write Header record to object program
      initialize first Text record
      while OPCODE + I END' do
         begin
             if this is not a comment line then
              begin Search OPTAB for OPCODE
                  if found then
                    begin et liere is a symbol in OPERAND field then
                       begin
Search SYMTAB for operand
                          Pf found thes
                            Store symbol value as operand address
                          elsebegin
                                Store O as operand address
Set error flag (condefined symbol)
                        end f if symbol }
                     else store o as operand address
                        assemble the object code instruction
                  end & if opcode found ]
          else of opcode = 'BYTE' UR WORD' The Y
           convert constant to object code.
         If object code will not fit into the current Text record to
         begin waite Test record to object program
           end in Halize new Text record
            add object code to Text record
          end fif not comment?
       waite listing line
    end & while not END?
  Write last Test record to object program
  While End record to object program
  write last listing line
end & pass 27
```

# MACHINE DEPENDENT ASSEMBLER FEATURES

- · Consider the design and implementation of an assembler for SIC/XE
- . In assembler language the following addressing indicates that
  - o indirect addressing Adding prefere @ to operand. (line 70)
    - o Immediate operands Adding the prefix # to operand (lines, 12,25,
      - Base relative addressing

Assembles directive BASE (Lines 12 213)

· Extended formal

Adding the prefix + to OP (ode Clines 15,35,65).

The case of register to register instructions, faster and don't require another memory reference.

| 5 cop    | Y STAKT      | 0                 | CON FIRE FROM Input to output                  |
|----------|--------------|-------------------|------------------------------------------------|
| 10 FIRS  | T STL        | RETADR            | Save Reform address<br>Istablish BASI Register |
| 12       | LDB          | # LENOTH          |                                                |
| 15 CLOOP | BASE         | LE NGOTH<br>RDREC | Read input Record                              |
| 20<br>25 | LDA          | LENKITI+          | Test for FOF (Lengin - 0)                      |
| 30       | COMP         | #O<br>ENDPL       | Exit If EOF Found                              |
| 35       | +JSUB        | WRREC             | White output Recerd                            |
| 45 ENDFI | L JOA        | CLOUP             | insert FOF file marked                         |
| 55       | STA          | BUFFER<br>#3      | Set Long 1t = 3                                |
| 65       | L DA<br>6-TA | LENCITH           |                                                |
| 70       | +JSUB        | WRRZC             | While FOF                                      |
| 80 EOP   | BHIE         | CRETADR<br>C'ZOF' | setum to caller                                |

95 RETADR RESW I Longth of Recerd
100 LENUTH RESW I Longth of Recerd
105 BUFFER RESB 4096 A096 - Byli Buffer curea.

- · The assembler directive BFISE (Line 13) is used in conjunction with base relative addressing.
- of the displacement required for both program-country heldive and base relative addressing are to large lo fit in to a 3-byte rist?, ten the 4 byte extended format (format 4) must be used.

iope relative / Base relative addressing of m

- · Endended format top in
- · Indirect addressing of @m
- o Immediate addressing of # C
- o Index addressing of m, x
- o register to register compr
- eg. COMP ZERO => COMPR A,5.
- execution speed of the program.
  - o) Reg. to reg. instris are faster than the corresponding reg. to memory operations because they are shorter, they do not require another my reference.
- o) Using immediate addressing, the operand is already present as part of he inst n and need not be fetched from emywhere.

of indirect addressing often avoids ) The use the need for another nistn. (eg. "reterr") operation on line 70]. Instruction Formats and Addressing modes ( Hand Assembly) - In this section We consider maisly, of Translation of the source State ments, to know handling of different vistruction fermats & different address ing modes. . The START Studement specifies a beginning par address of 0. for the purpose, of instra assembly the pgm will be translated exactly as If It were really to be loaded at machine add » Register translation Register name (A, X, L, B, S, T, F, PC, SW) and Ther values (0, 1, 2, 3,4,5,6, 8,9) . The conversion of register mnemonics to rumbers can be done with a separate lable (symbol lable) for this purpose. To do this symTAB would be preloaded with hi register an name and their values. egister to Regester interrections (Ex. CLEAR, and compr): - The assembler must Simply Convert the mnemonic operation code to machine language (cesing OPTAB). And change each register mnemonic to 9ts nemeric equivalent Ethis Occarstation is done during pass 2 (the above

Address translation: a Most of the registers to memory instructions are assembled using either program couster delative or base relative addressing. · The assembler calculate a displacement to be assembled as part of he object inst n. This is Computed so that the correct target address results when the displacement is added to the Contents of the pgm counter (pc) or the base register (B). The resulting displacement is Format 3 : 12 bit disp Caddress Ifield. ≈ pc-relative: -2048 to 2047 · Base relative; o to 24095 Furnat 4: 20 bit address field. · If neither pgm counter relative nor base relative addressing can be rused Checause desplace ment too large), then the 4 byte extended instruction for mat (Format 4) must be resed. . It is large enough to contain full memery address. o no displacement to be calculated in this cast. FX: 15 0006 CLOOP + JSUB ROREC 4B10103 In this inst " the operand address is case.

is stored in the instruction, with The full addicss I to indicate extended instruction bet e set 15 format. The programmer must specify the extended format by using the prefix + (as online 15). If extended format is not specified our assembles first allempt franklate the inst nuing pym counter relative addressing. It it is not possible, attempts to use base solutive. It possible, attempts to use base solutive. It neitter form of relative addressing is applicable and extended format & not specified, then the instr cannot be properly assembled. In this case, the assembler must generate an error mg. o Now the displacement calculation for pym Courter and base relative addressing modes of Format 3.

During exacution of instructions on SIC, the During exacution of instructions on SIC, the pgm counter is advanced after each instruction as fetched and before It is exacuted. Thus eleving the exacution of the STL instr. the PC eleving the exacution of the STL instr. the PC WIII contain the access of the next ristn(ii will contain the access of the listing, RETAIN (line 25) is assigned address 0030. (The assigned address 0030. (The assigned address 0030.

The displacement we need in the list is is 0000 0011 30 - 3 = 2D. 0011 1101 At the execution time, the tanget address will be (PC) + disp. calculation performed ei 0010 1101 disp) ie 0030 0011 0000 - (30) o The displacement calculation process for base relative addressing is much the same as

for pgm counter relative addressing. The mais difference is that the assembles knows what he contents of the pgm counter will be at execution line. The base regionke other hand, is under control of the page programmer. There fore, the programmer need tell the assembled nhat the base registes will contain during execution of the pgm sothat the assembler can compute the displacements. This is done with the assembler directive BASE

The Statement BASE LENGTH (line 13) informs the assembler that the base register will contain the address of LENITH. The preceding instruction (LDB #LENGTH) loads this value to the register during program execution)

Reload the pgm staining in 101B LDA THREE 00/3020 The absolute address should be modified This Start is translated as 00102D, specifying they hay heg. A is to be loaded from memory address 102D Suppose we attempt to load & execute the pym as 2000 instead of address 1000. If we do this address 102D will not contain the value that me expect - in fact, it will probably be poort of some other user's program. Obnously we need to make change is the address postion of this tost so we can load and occule out pgm at address 2000. Capant City . The assembler does not know the actual location where the pym will be loaded, . The assembler can identify for the loader those pasts of the pym that need modification. · An object program that confeins the information necessary to perform this kind of modification 18 called a relocatable program. Ex. fig. 2.6 line 15 6006 CLOOP + JSUB RDIZEC 413101036 tig 2.76 Shows this pgm loaded at

beginning at address 0000.

The JSUB inst n from line 15 is badeed at

The JSUB inst n from line 15 is badeed at

address 6006

The address field of the instruction labeled

The address field of the instruction labeled

RDREC contains 01036, which is the address of

the instruction labeled RDREC.

fig 2.7 Examples of pgm Relocation (b) · 413/01036 (+TSUB RDARE) - FISUB ROREY regelores of the below

Now Suppose that we want to load this pgm beginning at address 5000, is fig 2.7 (b).

The address of the inst o labeled kDREC is

then 6036. ISUB inst o modified as shown to contain this new address.

Like wise, if we loaded the pgm beginning of address 7420 (fig. 2.7 C), the JSUB 19549.

Would need to be changed to 4B108456 to

Correspond to the new address of RDREC.

- No matter where the pgm is loaded,

RDREC is always 1836 by les past the starting address of the pgm.

- This means that the we can solve the relation relocation problem in the following way:

1. when the assembler generalis the doject code for the JSUB vist n we are considering it will insert the address of RDDEC relative to the Start of the pgm.

2. The assembles will also produce a command for the loader, instructing to add the beginning address of the pyra to the address field in the JSUB instr at load line.

## MODULE III Assembler Design oftions:

Machine Independent assembler features-program blocks, Control Sections, Assembler design options\_
Algorithm for single pass assembler, Multipass
assembler, Implementation example of MASM assembles

203. Machine Independent Assembler features. Some common assembler features that one not closely helated to machine architecture.

2.3.1 - implementation of literals with in an assembler, including required data structure (
Processing logic.

2.3.2 - two assembler directives (Fau and ORGI)
whose main function is the definition of
symbols.

2.3.2 - The use of expressions in assembler lang.
uage statements (different types of
expressions and their evaluation lase.

2.3.46 - introduce différent topics of program 2.3.5 blocks and control sections

2.3-1 : Literals:

It is often convenient for the programmer to be able to write the value of a constant operand as a point of the instruction that cases of This avoids having to define the constant elsewhere

in the program and make up a label. for 14. Such an operand is called a literal because the value is stated & literally" in the instruction.

- A literal identified with the prefix =

45 6014 ENDFIL LDA = C'EOF' 032010

- Specifies a 3 byte operand whose Value is the character string EOF.

25 1062 WLOOP TD = x'05' E 32011

- Specifies a 1 byte literal with the hexadewmal value 05

o The difference between literal operands(=) and munediate operands (#)

value is assembled as part of the machine instruction, no memory reference

specified value as a constant at some other memory location. The address of this generaled Constant is rised as the TA for the machine instruction, using Pc relative or base relative addressing with memory reference.

Literal pool S: All of the leteral operands are margen ever gathered to gether in to one or more literal pools.

Normally leterals are placed in to a pool at the end of the pym. The assembly listing of a program containing literals usually includes a listing of this literal pool, which shows the assigned addresses and the generalized data values.

o The assembles directive LTORGY, Pt creates a literal pool that contains all of the literal operands used since the previous LTORGY (or the beginning of the pgm). This literal pool is placed in the object program at the location where placed in the object program at the location where the LTORGY directive was encountered. (Fig. 2.10)-the 93

If we had not used the LTORGN Statement on line 93, the literal = c'EOF' would be placed line 93, the literal pool of the pgm. This literal pool B the pool at the end of the pgm. This literal would begin at address 1073. This means that literal would begin at address 1073. This means that literal operand would be placed to far away from the meth referencing. It makes publish, to use PC relative addressinger Buse relative addressing to generate an object cate

· LTORG desirable to keep the literal operand close to the instruction that cuses it.

=) most assembler recognize deeplecale— literals— see

The same literal used in more to an one place is the

pgm - and store only one copy of the specified

data value for eg. the literal = x'05' is

used in one pgm in lines 215 2230'

However, only one data corea with this value is generated. Both instructions refer to hi same address in the literal pool for their observand.

- The data structure needed to handle literal used, operands is LITTAB. For each literal used, LITTAB includes literal name, operand value, length and the address assigned to operand. LITTAB is organized as hash table, using letteral name or value as key.
- During pass 1. The assembler Searches LITTAB for the specified literal name. If it is present no action is needed else the literal is added to LITTAB. When LIDRER Statement or end of pgm is encountered, assembles or each entry is table.
- =) During pass 2, the operand address for use is generating object code is obtained by searching LITTAB for each literal operand encountered.

2.3.2. Symbol Defining Statements

Most assemblers provide an assembler directive that allows the programmer to define symbols and speaty their values. The assembler directive generally used is EQU ( for "equale").

Symbol Fau Value

This Start defines the given symbol (ic , enters it in to symtas) and assigns to it the value specified. The value may be given as a constant or as any expression involving constants and previously defined symbols.

- Improved readability in place of numeric values.

Forey. on line 133 in by 25

+LDT # 4096

to loud the value 4046 in to reg. T. This value represents the maximum length record we could read with subsoutine RDREC.

On assigning

MAXLEN EQU 4096

line 133 can be written as

+LDT #MAXLEN

When the Assembler encounters the EQU start, Pt enters MAXLEN is to SYMTAB ( With the value 4096) During Assembly of the LDT instruction the assembles Searches SYMTAB (to for the symbol MAXLEN, using its value as the operand in the instruction.

o Another common use of EQU is in defining mnemonic names for registers.

Register AIX, L can be used by No:s 0, 1,2.

numbers instead of names in an enstruction like RMO (Register meve)

o The standard names of (base, index) reflect the usage of registers

BASE EQU RI

Count Eau R2

INDEX EQU R3

=) 'ORG' assembler dérective can be used to indirectly assign values to Symbols.

ORG Value.

where value is a constant or an engression.

Then this statement is encountered during

assembly of a program, the assembler resets

Pts location counter (Locate) to the specified

Value. Since the values of symbols used as

Value. Since the values of symbols used as

labels are taken from Locate, the ora state
labels will affect the values of all labels

ment will affect the values of all labels

defined until the nost oran.

For a symbol lable with following structure

|             | SYMBOL                         | VALUE                                          | FLAGS                               |
|-------------|--------------------------------|------------------------------------------------|-------------------------------------|
| STAB        |                                | BREER 8                                        | SIM                                 |
| loo entries | 6 byte user defined<br>87 mbol | one word<br>representation<br>of symbol values | 2 by le<br>specifies<br>symbol type |
|             | 1                              | NUE REC                                        | W                                   |
|             | 8                              | DAS RESP                                       | 4                                   |
|             | STAB-HOC                       | DOB .                                          | ,                                   |

we could reserve space for this table with the state ment -> STAB RESB 1100

-To refer to the fields SYMBOL, VALUE, FLAGIS
individually, we must define these labels one way of doing this using EQU statements.

SYMBOL EQU STAB (1100)

VALUE EQU STAB +6 (1106)

FLAGS FOU STAB +9 (1109)

This statement LDA VALUE.X

Jetch the value VALUE field from the lable
entry indicated by the contents of reg.X.

The above method Simply defines the labels

At does not make the Structure of table clear.

The same symbol definition using oras is her 2.

Jollowing way,

STAB RESB 1100

ORG STAB

SYMBOL RESB G

VALUE RESB 1

FLAMS RESB 2

BRG STAB+1100

- first ORG resets LoceTR to value of 8TAB (Starting address of table).

- The label SYMBOL will get convert value de Locare as its value.

- The label VALUE is assigned address (STAB+6).

LOCCIR is advanced to et.

- FLAGS is assigned STAB+9.

This definition makes It clear each entry is STAB consists of 6-byte symbol, followed by one-word NALUE, followed by 2-byte flugs.

A The least 'ORG' Sets LOCCTR back to
the previous value. So any labels on subsequent statements ( which are not part of STAR) are assigned proper address.

### 2.3.3. Expressions

Assembless generally allow our thometic expressiony formed according to the normal rules essing the operators +, -, x and /.

- Division is cesually defined to preduce an intege result.
- Individual teems in the expression may be constants, and defined symbols on specual teem
- The values of terms and expressions care either Relative on absolute : Cindependent of program · location).
  - · A constant is an absolute term.
  - · Labels on instructions and data wears, and relative loans. relative loans.
  - · A symbol where value given by EQU) may be ciller an absolute leem or a relative teem depending upon the expression used to define Pts Value

Expressions are elassified as either absolute expressions or relative expressions depending upon the type of value they produce.

- An expression that contains only absolute terms is an absolute expression.
- Nalue that may be curitien as (S+2), where sist is the starting address of the program and his the value of the lean or expression relative to the starting address. Thus the relative term to the starting address. Thus the relative term usually represents some location with in the pymerousally represents some location with in the pymerousally represents are paired with apposite when relative terms are paired with apposite

EX. 101 MAXLEN EQU BUFEND-BUFFER

- a Belt BUFEND and BUFFER are helative liens.
- o The expression represents absolute value.

  ii the difference between the two addresses

  o Loc = 1000 (tra).
- represent neither absolute values nor locations.
- o To determine the type of an expression, we must keep track of the types of all symbols defined in the program. For this perpose we need a flag in the symbol table to indicate type of value

(abosolule or relative) in addition to the value ptself.

bone symbol to the entries are like

| symbol | TYPE | value. |
|--------|------|--------|
| RETADR | R    | 0030   |
| BUFFER | R    | 0036   |
| BUFEND | R    | . 1036 |
| MAXLEN | A    | 1000   |

delamine the type of each expression rused.

2.3.4. Program Blocks

- The Source program logically contained main,
  Subroutines, data areas. They were handled by the
  Subroutines one entity, resulting in a single block of
  assembler as one entity, resulting in a single block of
  object code. With in this object program the generaled
  machine instructions of data appeared in the same
  order as they were written in the Source program.
- Flexible handing of the Source Lobject programs.

  provide by many assemblers these assemblers allow provide by many assemblers these assemblers allow the generaled merchanic instructions and data to appear in the object program in a different order from the corresponding Source statements.

   Other Jeatures result in the creation of the several risdependent parts of the object program.

- -> Program blocks to refer to segments of code that ove rearranged within a single object brogram unit.
- -) Control Sections to refer to segments of code that are translated in to indindependent object program units.

Fig 2.11 is ex pgm wretten usery 3 program

The first Cunnamed) program block contains the executable instructions of the program.

The second C.CDATA) contains all data areas
that are afew words or less in length.

- The third (# CBLKS) contains all data areas that consists of larger blocks of memory.
- of the source program belong to the various of the source program belong to the various blocks. At the beginning of the toym, statements are assumed to be point of the einnamed Codefault) block. If no USE statements are included, the entire program belongs to this single block eg. In hig 2.11 line 92 -> USE CDATA =>
- segments

The assembler will recoverage there segments to gater løgetter the pièces of each block. - The arrembler accomplishes this ligical avangement of code by maintaining, a separate location Counter for each program block. - The location counter for a block is initialized to o wheel when he black is first begun. - The current value of this location country is saved when switching to another block and the saved value is restored when resuming the previous -During passet, each label in the pgm is assigned an address. When labels are entered in to the symbol lable, blick name og number is stored along. with the relative address. At the end of the pass I the latest value of the location countre for each block indicates the length of that blick. At the end of the pass 1 assembles constructs a lable that contains he starting addresses and lengths for all blicks Block name Block neember Address length default 0 · 0066 000B CDATA 00T1 1000 CBLKS

During pass 2, the assembler needs the address for each symbol. Relative to the Start of the object Fig. (not the start of an individual program block). This is found from the information in SYMTAB. The assembler simply adds the location of the symbol, relative to the start of its block, to the assigned block starting address.

Ex:

20 0006 0 LDA LENISTH 032060

SYMTAB Shows the value of the operand (the symbol LENGSTIH) as relative location 0003 with its the program block 1 (CDATA). The strating address for CDATA is 0066.

Thus TA = 0003 + 0066 = 0069.

The assembler directive USE indicates which partions of the source pgm belong to the various blocks. The USE start on line 92. - [ USE CDATA] signals the beginning of the block named CDATA. Source stmls are associated with this block with the USEstat on line 103 [USE eBLICS], which begins the block named CBLKS. The USE Stort may also indicale the continuation of a previously begun block. Thus Start on line 123 CUSE ] resumes the default block. 2 the start on line 183 [ UST CDATA] resumes the block source pgm object 19m pgm leaded in memory named CDATA · lines Default(L) Default(1). > Default(1) Arg. 2.14 pgm blocks 7 DetaulH(2) > Defaulte) CDATA(1) from fig. 2.11 traced EDATA(2) Default B Detault (3) through the assembly & Default(2) loading process 155 CDAM(2) Default 3) CBUESCI) CDATA(3)

#### 2.3.5 Control Sections & Pgm linking

A control section is a part of the the program that maintains its identity after assembly; each such control section can be loaded and relocated independently of the others.

-Different control sections are most often used for submissions or other legical subdivisions of a 19m.

-The programmer can assemble, load and manipulate each of these control sections separately.

- Flexibility is a major benefit of cusing controlsections.

- When control sections form legically related parts of a program, thus it needs toward linking them together. Instructions in one control section need to refer to instructions or data located in another section. Because control sections are independently loaded and relocated, the assembler is unable to process these references in the usual evay. The assembler has no idea where any other control section will be located at execution time. Such references blue control sections are called extremal references. The assembler generates information for each external seference that will allow the loaded to perform the required linking.

External Reference Handling of Assembler

Ex. 2.15 example program includes 3 control sections (5-107) - START statement identifies the beginning

of cessembly and gives a name (COPY) to the first

(109-190) > CSECT (Ine 109) -> indicates the Second

(193-255)-) CSECT start on line 193 begins the contral Section named WRREC.

The assembler establishes a separate Location wunter for each C.S. Cheginning at 0).

- o Control Sections differ from pgm blocks in that they are handled separately by the assembler.
- or Symbols that are defined in one C.3 may not be cused directly by another control section they must be identified as external references for the loader to handle.

Two assembles directives to identify he references one: EXIDEF (external Definition).

EXILEP (external Reference).

EXTDEF Steelement in a control section names, symbols called exteenal symbols that are defined in this control section and may be rused by other sections.

Ex in fig 2-15

5 COPY START O

EXTDEF BUFEND, LENGTH

| 100 | LENGTH  | RESW  | 1    |
|-----|---------|-------|------|
| 103 |         | LTORG |      |
|     | BUFFER  | REBB  | 4096 |
| 105 | BUFFEND | EQU   | *    |
| 106 | BUTTE   |       | -    |

- o Control Section names (in this case COPY, RDREC, and WRREC) do not need to be named in an EXTDEF Statement be cause they are automotically considered to be external symbols.
- \* EXTREF Stalement names symbols that one used in this control section and are defined else where.

For ex. The symbols BUFFER, BUFFEND and length are defined in the C.S LOPY and made available

to the other sections.

fig. 2.15 5 COPY START O

EXT DEF BUFFER, BUFEND, LENSTH

EXTREF RDREC, WRREC

CSELT 109 ROREC

EXTREF BUFFER, LENGTH,

CSECT 193 WRREC

Consider the instruction in fig 2.16. 15 0003 CLOOP +JSUB RDREC 4B 10000 The operand CRDRECT is named in the EXTREX Statement for the control section, so this is an external reference. The assembler has no idea nhere the central section containing RDREC will be loaded, soit cannot be assemble the address for this instruction. - The assembler inserts an address of zero and passes information to the loader, which well cause the proper address to be inserted at load time The entended format vist? must be used to provide hoom for the actual address to be - The two new he cord types are Define and Refer. A Define record gives in fermation about extunal symbols that are defined in this control section - ie symbols named by

EXTDEF. A Refer second les les symbols that core used as external references by the control

section - le symbols nameel by EXTREF

The farmant of there second as follows.

Define record: Name of external symbol defined in this C.S col. 1 col. 2-1 Relative address of symbol with in this C.S (Hex) col.8-13 Repeat information in Col. 2-13 for other external col-4-73 Symbols. Refer record

Name of external symbol referred to in this C.S col.1 Name of other external reference symbols. c 01.2-7 Col. 8-13

The other information needed for program linking is added to the Modefication record type. The new format is as follows

Modification record (revised):

col. 1

Starting address of the field to be Col. 2-7 modified, relative to the beginning of the control section (hexadecimal).

Length of the field to be modified, Col. 8-9 in half by tes ( hexadece mal).

Mudification & lag (+ or -) Col. 10

Exlaral symbols whose value is to be Col · 11 - 16 added to or subtracted from the indicated field.

- The address field for the IsuB instr on line is begins at relative address 0004. Its initial value is the object pgm is Zero. The modification record is CS copy Spenties that address of RDREC is to be added to this field

thus producing the correct machine instruction for execution.

- The other two modification he cords is copy pertorn similar functions for the meters on line 65 & 35.

#### 2.04 PISSEMBLER DESIGN OPTIONS

- Two alternatives to the standard two-pass assembles logic.
- 2.4.1 One pass assembles used when it is necessary to avoid the Second pass over the Source pgm.
- 20402 Multipass assembles extension to hu Lue pass logic stud allows to handle forward references during p symbol definition:

#### 20401 8 One pass Assemblers

- The main problem in trying to assemble a program in one pass involves forward references. I symbols have not a been defined in the source program. Thus the anembles doesnot know what add less to insut in the translated instruction?
- Tt is easy to eliminate forward references to data stems; for that all such mared

be defined in the source Pyn hefore my are referenced. (Eg. 2.18) · forward references to labels on instructions cannot be eliminated easily [ the logic of the pgm of los requires a forward sump). There are two main types of one-pass 1) Preduces Object code directly in memory for Assembler: inmediate execution 2). Object program for later execution 1-> For the first kind of assembler, no object program is written out, and no loader is heeded called Load and go Assembles. -Because the object program is produced in my hather than being whiten out on Secondary storage the handling of forward reference be comes less The assembler simply generalis object code instructions of the source program. If an instruction elifficult: operand is a symbol that has not yet been defined, the operand address is prositted when the instr is assembled. - The symbol used as an opereund is entered to sindicale that he symbolis undefined.

- The address of the operand instruction that refers to the undefined symbo, 9s added to a list of forward references associated with the symbol lable entry. when the definition for a symbol is encounter red, the forward reference list for that symbolis Scanned, and the proper address is inserted in to eng hstas previously generalid. - Fig 2.19 (a) shows the Object code and symbol table entries as they would be after scanning line 40 in Fig. 2.18. The first forward seperence occurred on line 15. Since the operand CRDREC) was not get defined, the instruction was assembled with no Value assigned as the operand address Edenoted in the fig. by ---) RDREC was then entered in to SYMTAB as an undefined symbol (indicated by \*). The address of the operand field of the inst n (2013) was inserted in a list associated With RDREC. LENGTH 100C \* 2013 0 mry address Contents ROREC 454F 4600 00500000 1003 THREE XXXXX XXXXX XXXXXXX 1006 2ERO \* | 0 > | 201F | #) WRREC EOF \* 201cl0 ENDFIL 2000 2010 1009 RETADR 2020 LOOF BUFFER CLOOP 2012 2019 (a) FIRST a object code in mry and symbol table 200F entries for the pgm fig. 2.18 Cafter scanning

- fig - 2.19(6) I which corresponds to the situation cofte Scanning line 160. Some of the forward references have been resolved by this time, while others have been have been resolved by this time, while others have been have been resolved by this time.

- At the end of the program, any syntaB entires

- At the end of the program, any syntaB entires

that are still marked with \* indicate undefined

symbols. These should be flagged by assembler as

envers.

| - dayec       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | Symbol            | value  | and the     |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------|--------|-------------|
| mry address   | 45 454600 0003 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OOXXXXX XXXX                                 | LENGITH           | 1000   |             |
| 1000          | 45 AFAGOO XXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XXXXXXX XXXXXX                               | RDREL             | 203D   | 421 60      |
| 1010          | * XXXXXX XXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | THREE             | 1003   | 339         |
| tall in       | the state of the s | XXXXXX XXXXXX                                | ZERO              | 1006   |             |
| 2000          | * X X X X X XX XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K. K. X. | WRREL             | * -    | × [20] [ 9] |
| 2010          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | EOF               | 1000   | 20310       |
| 2020          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | ENDFIL            | 2024   |             |
| 20 30         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | The second second |        | 13/34       |
| 2040          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | RETADI            |        |             |
| 2030          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | BUFFE             | LOOF   |             |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | CLOOP             | 20/2   |             |
| or to reprise | 1) 1 . 1 . 2 . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and symbol                                   | FIRST             |        |             |
| Fig. 2.19(6)  | object code in my                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.50 -1 15.                                  | MAXLE             | N 2034 |             |
| table entres  | for pym in try                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 2.18 af ac                                 | INPUT             | 2039   |             |
| (100          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | EXI               | X      | 2050 0      |
| y co ususa    | line 160'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | R Loo             | P 2043 |             |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 1                 | 3      |             |

- When the symbol ENDFIL was defined (line 45) - (2024), the assemblee placed its value in the SYMTAB entry, It than inserted this value in to the inst? operand field (2016).

-> RDREC - 2030 @ 2013

-) Mean while the two fund references have been added WRREC (line 65) and EXIT (line 155).

When the end of the program is encountered, the assembly is complete If no errors have occurred, the assemble searches SYNTIAB for the value of the Symbol named is the END Stort and jumps to the location to begin execution of the assembled pgm.

2) The pass essemblers that produce object pyon for Jottow later execution Jollow a slightly different Procedure. (11818 loader service)

- Forward References are enleved into lists as before. But when the definition of a symbol is encountered enstructions that made forward reference to that Symbol may no longer be available in my for hiedefication. They will already have been unter out as part of Text second in object program.

The assembler must generale another Text record with correct operand address. when the pgm & louded this address well inserted is to the inserted instruction by the action of the

leader

- Fig. 2.20 The second lost kellerd contains The object code generated by from lines to through 40 is \$9.2.18

Frg . 2.20

1). Troolooo, 09, 454F 46,0000003,0000000

- The operand address for the inst ns on line 15

2) Table been generaled coop.

2) Table 200F, 15 a 14 1009 a 480000 a coloco a 2 5100 cm 30 0000 a line 10 line 15

-on executing line 45, ENDFIL is defined, the assemble generaled third Text Record.

This specifics the value 2004 (address of ENDFIL) is to be loaded at location 2010 (operand add field on line 30).

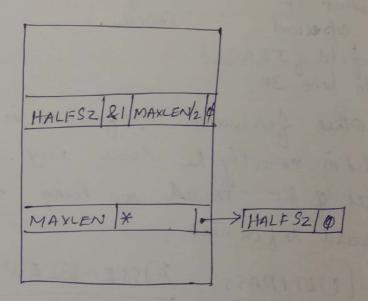
- when the figm boaded, this value 2004 will replace the 0000 previously boaded.

3) Table 10 2 a 2024

Add of Add of FNDFIL.

field of JEa in line 30

The other forward references in the py m are handled in maetly the same way. In effect the services of the leadest core being resed to complete forward reforences.


#### MULTIPASS PISSEMBLERS

It can make as many passes as one needed to process the definitions of symbols. It is not necessary fin such an assembler to make more than two passes over the entire program.

Eg. Shows the sequence of symbol defining statements that involve forward references. Ex.

- 1) HALFSZ EQU MAXLEN /2
- 2) MAXLEN EQU BUFFEND-BUFFER
- 3) PREVBT EQU BUFFER-
- 4) BUFFER RESB 4096 1034
- 5) BUFEND Z-QU \*

fig-below shows that it display symbol table entries resulting from pass 1 processing of the Statement.



HALFSZ EQU MAXLEN/2.

MAXLEN has not yet been defined, so no volue
for ItALFSZ can be computed. The defining
expression for ItALFSZ is stored in the symbol
table in Place of 18 value.

The entry &1 indicaled that one symbol
he defining expression is undefined.

actual implementation, this definition must be stored at some other location. SymTAB contain pointer to the defining expression. - The symbol MAXLEN entered in the symbol table, with The flag x identifying of as undefined. This entry also includes as list of symbols whose values depend on MAXLEN. MAXLEN 0 BUFFEND \* HALFSZ \$1 MAXLEN/2 0 MAXLEN &2 BUFFEND- HALFSZ MAXLEN BUFFER \* Fig- Conf Massing F-19-D MAXLEN 0 BUFFEND \* HALFSZ \$1 MAXLEN/20 PREVBT \$1 BUFFER-1 MAXLEN &2 BUFFER HALFSZ MAXLEN PREVBT BUFFER

| The part of the first over of the first                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BUATEND X                                                        | >[MAXLEN   Ø]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HALFSZ SI MAXEEN/2 10                                            | A or wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1172 JOI 1014 X LENO 12 10                                       | a leave and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PREVBT / 1033   0                                                | K walls of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| the probables of states of                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAXLEN   \$1   BUFFEND-B                                         | HALFS2 @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BUFFER 1 1034 10                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                  | BUFFERND X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PORKED ! C                                                       | Fig-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BUFFEND   2034   10                                              | r19-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HALFSZ 1 500 1                                                   | MAN EV EL B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PREVBT   1033 1 1 0                                              | BOFFER *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MAXLEN 11000 10                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BUFFER / 1034 10                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In Fig-C - There can two was breed                               | BUFFEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| In Fig-c - There one two undefined in the definition: BUFFER and | BUEFFORD Thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| are entered is to SYMTAB with                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| the dependence of MAXLEN. cup                                    | The second secon |
| Similarly the definition of                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| this symbol to be added to                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nues on BUFFER Preg dj.                                          | estans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

. The definition of BUFFER on line 4, bogins evaluation of these some symbols.

Letus assume that when line 4 is read, the location counter contains the hexadecimal value of 1034. This address stored as the value of BUFFER. The assembled Hen examines the list of symbols that are dependent on

- The symbol table entry for the first symbol is this lest (MAXIEN) shows that It enters a value for MAXLEN causes the evaluation of the symbol is 9ts list CHALF SZ). In fig (3) this completes the symbol defor. Phocess If any symbols he mained undeti ned at the end of the pgm, the assembler would flag them as errors.

Implementation Example

- Example of assembler for real machines.

- facus on main interested features.

MASM Assembler

MASM Assembler

- An MASM assembler language program cs written as a collection of segments.

- Each segment is defined as belonging to a particular class, corresponding to its contents. - Commonly used classes are: CODE, DATA, CONST

During program execution, segments une address Vea the X86 segment registers. - Code segments are addressed using seguster CG. and Stack segments are addressed Using Register SS -Thuse segment registers automatically set by the system loader when a program is loaded for execution. - Register (5 is set to indicate the segment that contains the starting label specified in the IND start of a pgm. - Registes SS es to set la indicate the last Stack segment processed by the loader. - Data Segments (including constant segments) one normally addressed using DS, ES, FS ox - The segment register to be used can be specified explicitly by the programmer Cby writing It as part que assembles longuage inst n). - If the phegrammer does not specify a segment seg, one is selected by the assembler. By default, the assembler assumes that all refound to data segments use register DS. This combe changed by the assembler directive AssumE. For ex. ASSUME ES: DATA SEGI 2

tells the assembler to assume that reg. ES indicates the segment DATASEGZ. g Thus any references to labels that are defined in DATASEGIZ will be assembled using seg. ES. - Halso possible lo Collect serval segments into - Registers ESIDS, FS & Grs leaded by the pgm before they can be used to address data segments. The inito > MOV AXI DATASEG 2 MOV ES, AX. would set to ES to indicate the dataseg. DATASEG 2. - Assume tells MASM the contents of a segment reg. the pgmr must provide instris in to load this heggetes when the pym is Enewted. a Jump instructions are arrembled in two difformays depending on whether the farget of the jump is in the Some code segment des the jump inst n. - A real jump is a jump to a target in the same - A far jump is a jump to a larget in a different A reae jump is assembled using the distress code. Segment seg CS. code Segment. A foir jump must be assembled using a different segment reg. which is spenfiel in an inst n prefex.

Ex: IMP TARGET | forward refunnes to land intre pgm can cause problems. If the def of the label TARGET occurs is the pgm before the JMP instn, the assemble Can tell whether this is a near jump or fea If this is a forward reference to TARGET The assembler does not know how many bytes to Reserve for the Enston. By default MASM assumes that a forward jump is a near jump. It the target of he jumpis another code segment, the programmer must wan the anembler by writing JMP FAR PTR TAR LIET If the jump address with is 128 bytes of the current insto , the programmer can specify the shorter (2-byte) near jump by whiting JMP SHORT TARGET. a Similarity blu the few jump & the forward reference in SIC/ XI - that require the use of extended format instr o pass 1 of an x86 assembler complex tous passing a 81c assembles. Le coz analyze the operands of an instr. 2 operation code table are more complicated.

o Segments can perform a similar function to the program blocks en sic /xto References blu beginsts assembled together are automatically handled by the assembler.

o External References handled by linkers

o The MASM directive PUBLIC = EXTIDEF in SIC/XE. & EXTRN => EXTREF. othe objed pym from MASM in diff. form & Zasy & efficient execution of the py m is valety of OS enfronments. o Inst" timing listing -> shows no of clac cycles required to execute each m/c inst "

#### MODULE IV Linker 2 Loader:

- 1) Loading: which brings the object program is to memory for execution
- 2) Relocation Medities the object program so that It can be leaded at an address different from the location originally specified.
  - 3) Lanking: Combines two or more separate
    object programs and supplies the information
    needed to allow regerences between them.
    - A Leader is a system program that performs to loading function. Many leaders also support herebecation and lineing. Some systems have relocation and lineing extitor) to perform the a lenter (lineage extitor) to perform the lineage operations and a separate loader lineing operations and a separate loader

# 3.1 Basic Loader Functions

The fundamental functions of a loaderbringing an object program in to memory and Steating its execution

## 3.1.1 De sign of an absolute louder

Loader does not need to perform functions es lin and program relocation, es Operation à very simple. The Header record is checked to verify that the correct program has been presented for loading. (and that fit is to the avairabable mry).

- As each text record is read, the object code of contains is moved to the indicated address in my.

- when the End record is encountered, the locater jumps to the specified address to begin execution of the baded pans.

| nemony<br>address | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | old 3      |
|-------------------|----------------------------------------|------------|
| 00104             | ******* ****** ****** *****            | CKXX       |
| 1010              | 14 1033 48 2039 0010 3628 1030 3010    | L)         |
| 2070              | Tenuer Cond and assessed               | NOW NOW IN |

1

Rabno

- prepresentation of the pym is fig (2.2) is modules

HCOPY 001000,001074

T,001000,1E,141033,482039,001036,281030,301015,482061

E001000

Fg 3.1(a) ->object program.

- In the object program each byte of assembled code

character form. For ex. The machine operation is character form. For ex. The machine operation code for on STL cirst" represented by the pair of characters "1" 2"4" when there are lead by the loader, they occupy two bytes of memory.

- In the instr as locaded for execution, this open tion code must be stored in a single byte with

Thus each pair of bytes from the object program belowd must be packed together in to 1 byte during loading.

tig. 3.16) each printed character represent 1 byte of the object pgm record.

Fig 3.1(b). reach printed chemader represents one heradecimal digit in my.

- This method is inefficient in teems of space Lexecution time

- Thorefore most machines store object programs is a

binary form, with each byte of object code stored

as a single byte in the object Pym.

-Fig-3.2 Shows an algorithm for the absolute loader. begin read Hearder record

Yeard Hearder record

Verify program norme llegit

read first Textrecord

while record type # E' do

begin

Pf object code is in character

form, convert in to internal

2 representation

move object code is to specified location in memohy.

read next object program record end gump to address specified in End record.

end.

## 3.1.2 A 3 sple Bootstrap Loader

When a computer is ferst turned on or restanted a special type of a brother loader called a book strap loader is executed.

- This bootstrap loads the first program to be run by the computer - usually an operating system.

- The bootstrap begins at address o in the memory of

machine . It leads the Os starting out address 80.

-Each byte of the object code to be leaded is hepresented on device It as two hexadecumal digets (H is leke a Text record of a SIC Pgm).

- The object code from device F1 is always loaded into consecutive bytes of memory, starting at address 80.

- After all of the object code from derice F1 has been loaded, the bootstrap jumps to address 80, Which begins the execution of the pgm that was loaded.

The work of the bootstrap loader is performed by the Suphoutine GIETC.

The submoutence CIETC reads one character from device FI and converts of from AscII character code to the value of hexadecimal digit that is represented by that character for exp the Ascii code for the chara etes "0" Chexadecomal 30) is converted to theremeric

The bootstrap ignores any control bytes that are

- The mais loop of the bootsteap keeps the address of he next memory location to be louded is hegistes X. GETC is used to read and convert a pair of characters from de 10 F1.

-These two de hexaderinal digit values are

combined in to a single byte.

- The resulting byte is stored at the address cornestly is register X, using STCH Instn that refers to location o using indexed addressing.

-The TIXR instruction is then used to add 1 to the value is register x.

- Bootsteap loader GIETC subsoutine Shown in Fig 3.3 PINO. 134.

## 3.2 MACHINE DEPENDENT LOADER FRATURES

- · Absolute loader has several dis advantages.
- o In a simple computer with small memory, the pagrammes to specify Chien the pgm is assembled be leaded is to the actual address at which will be leaded is to memory. Starting address of user pgm knowning advance.
  - o on a larger and more are advanced machines several independent pyms hun together is having memory and other resources between him.

    To Do not know the starting address in advance.
- o Thus Refficient showing of he machine regulares that we write relocatable pyms Pristead of absolute ones.
- efficiently.
- o solt ne use more complex loaders, et
  - o Relocation (machine dependent \_ 3.2.1)
  - o henking (not m/c dependent -3.2.2)

### 3.2.1 Relocation

Loaders that allow for program relocation are called relocating loaders 08 relative baders.

there are two methods for specifying relocation.

I Modification record:

It is used to describe each part of the object code that must be changed when program is relocated. In Fig - 3.4 shows SIC/XE Pgm.

- Most of the instructions in this pgm use relative or immediate addressing.

- Fig-34 lines 15, 35, 265 contains actual addresses
Thus these are the only items whose values are affected
by relocation.

Line Loe Source Statement Object code.

1) 15 0006 CLOOP +JSUB RDREC 413101036

2) 35 0013 +JSUB WRREC 413/0105D

3) 65 0026 +JSUB WRREC 4B10105D Subroutine to read record in to Buffer 125 1036 RDREC CLEAR X B410

: Subroutine to work Record from Buffer. 210 1050 WRREC CLEAR X B410

(Fig - 304)

- Fig - 3.5 shows the object program corresponding to

There is one modification record for each value that may be changed during relocation. (in this case three instray) - Each modification record specifies the starting address and length of the field whose value is to be altered. It then describes the modification to be performed.

- In his example, all modifications add the value of the symbol copy, which represents the stor. ling address of the pym. (fig-3.6).

HACOPY ,0000000,001077

TA ---
MA 000001405+ COPY

MA 000001405+ COPY

MA 000001405+ COPY

EA 000000

799 - 3.5 object pgm with relocation by Noelfication made

Fig. 3.6 begin get procender from operating system

SIC/XE While not end of input do

rebeation begin read next record

toader while record type \$\frac{E}{2}\$ do

Algorithm. begin

read next input record

while record type = T' than

begin

move object code from record & lacohon

end ADDR + specified address.

There record type = 'M'

add Prograder at the beation prograder

end end end end Specified address.

instructions except RSUB uses direct addressing.

In such case, the modification record number increases.

In relocation list technique there is a relocation bit associated with each word of object code. Thus one relocation bit for each instruction.

The COPY 2000000,00 10HA of Std 3k machine does not cesting relative addressing.

Excoooco fig - 3.8 Lobject pym with relocation by bit

There are no modification records

The relocation bits core gathered together is to a bit mask mask following the length indicator in each Text record. In Fig 3.8 this mask is represented (in character form) as three hexadecimal digits.

object code is set to 1, the program's starting address is to be added to this word when the pgm is relocated - A bit value of 0 indicates that no modification is necessary.

-If a Text record enterins fewer than 12 words of object code, the bits corresponding to unused words one set to 0.

-for ex. the betmask FFC Crepresenting the bit 3thing 111111111111100) in the first Text record specifies that all 10 words of object code one to be modified during relocation.

2.2 Program Linking: The goal of program linking is to resolve the problems with external references ( EXTREF) & external definition (EXTORF) from different antiol sections. The EXTDER statement in a control section names symbols called external symbols that are defined in this [ present) Control section & may be used by other sections. EXTREF - Statement names symbols essed (inthis) present control section and are defined elsewhere - In fig-3.10 - three programs numed as PROGA, PROGA, and PRIOBIC, which are reparately assembled and each of which consists of a single control section. LISTA, ENDA in PROGA. LISTB, ENDB in PROGB LISTC, ENDC in PROGIC are external definitions is each of the control sections is PROGA. 2 ENDC Similarly LISTBI ENDB, LISTC in PROGB LISTA, ENDA, LISTE & ENDE to PROG C LISTA, ENDA, LISTB & ENDB are the external references. These sample programs given here core and to alhestade lineing I relocation. Consider first the reference marked REFI. M 0020 REF1 LDA LISTA 032010

- PEFI is simply a reference to a label with & the pam.

   It is assembled in the result way as a pc relative

  instruction.

   No modification for relation or linking is

  necessary.
- is 0036 REFT +LDA LISTA.
  - The assembler cues an ordended-format instruction with address field set to 0000.
  - The object program for PROGIB (Fig 3.11) contains a modification record instructing the louder to add the value of the symbol LISTA to this address field when the pgm is limited.

i M,000037,051 + 115TA

- For PROMC, REF1 is hundled in exactly the sameway.

  No 0018 REF1 HLDA LISTA 03100000

  Modification record is strict

  Ma 0000191051 +LISTA.
  - be the difference blw ENDA and LISTA.

    0027 REF3 LIDX # ENDA LISTA 050014
    - · In PROGRA, the assembler has all of the red infor

During the assembly of PROGIB (and PROGIC), the values of the labels are unrenown. In these promy the expression must be assembled as an external reference (with two modification records) even though the final result will be an absolute value independent of the locations at which the programs are leaded.

=> Consider REF4 of PROGA.

The assembler for PROGRA can evaluate all glic expression in REF4 propt of for the value of LISTC.

This results in an initial value of '000014' H and one modification record.

M1 00005 41061 + LISTC

The same expression is process contains no terms that can be evaluated by the assembler. The object code there fore contains an initial value of 000000 and three Modification records.

MA 000070 A 06 + LISTA MA 000070 A 06 + LISTA MA 000070 A 06 + LISTC

=) REF4 of PROGC.

FOR PROGIC, the assemble can supply the value of LISTC relative to the beginning of the pgm.

(but not the actual address, which is not known until the program is loaded). The initial value of until the program is loaded). The initial value of LISTC this data word contains the relative address of LISTC (1000030'H). Modification records instruct the leader to add the beginning address of the program (is to add the beginning address of the program (is to add the value of ENDA, and to subtract the value of LISTA.

- Fig - (3012 A) shows he memory view after loading

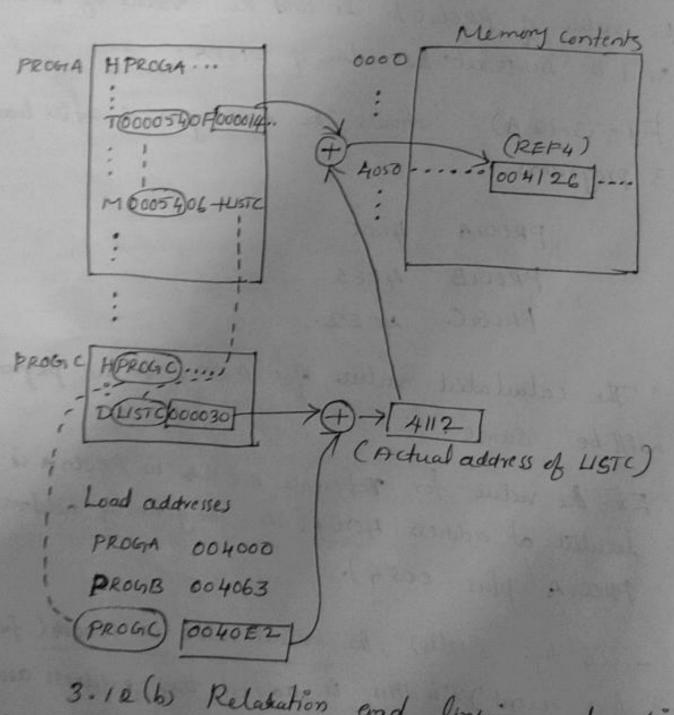
PROGIB 4063 PROGIC 40E2.

The calculated value for REF 4 is all programs

Ex the value for reference REF4 in PROGRA is localed at address 4054 (the beginning address of PROGRA plus 0054).

- In fig - 3 12(b), the initial value is 000014 (from lest lected). To this is added the address assigned to LISTC which is 4112 (0040 E2 +000030) same in PROCIB & PROCIC

- fox ex. the value fox reference REF4 is PROGACS


located at address 4054 (4000 + 54). The address

assigned to list, LISTC, which is 4112 C beginning

address of Probact + 30 is 40 E2 + 30)

To the initial value (000000), the loader adds the value ENDA (4054) & LIST C (4112) & Subtracts LIST Allang The computation for REF4 is PROGA, PROGB & PROGC results in same value.

ENDA-LISTA HUSTC



3.12 (b) Relatation and linking operations performed on REF4 from PROGA.

# 3.2.3 Algorithm & Data Structures for a Linking

The algorithm and for a limbing loader is conside-Roebly more complicated than the absolute loader algowithon. The input to such a loader consist of a set of object programs that are to be linked together.

- The required linking operation cannot be performed entil an address is assigned to the external symbol

- A Unleing loader usually makes two passes over 145 input, just as as assembler does.

pass 1: assigns addresses to all external symbols. pass 2: performs the actual loading, relocation, and linking.

- The main data structure needed for our linking Coader is an external symbol table CESTAB).

- This table, which is analogous to SYMTAB is assembly algorithm, is used to store the name and address of each external symbol in the set of control sections being loaded:

-The table also defines in which control section the symbol is defined. A has ted organization is exect for this table.

Two other important variables are PROGRADDR

Cprogram address) and CSADDR (until section

- PROGRADDR is the beginning address in memory where the linked program is to be leaded. Its value is supplied to the leader by the OS.
- CSADDR contains he Starting address assigned to the control section correctly being Boanned by the loader.

This value is added to all relative addresses withinker control section to convert them to actual addresses.

- Algorithm in fig \_\_\_
- During Passi, the louder is concerned only with Header and Define record types in the Control Sections.
- The beginning load address for the lineed program CPROGIADDR) is obtained from the Os. This becomes the Starting address (CSADDR) for hi first control section in the input sequence.

  2) The control section name from Header Record is
- entored is to ESTAB, with the value given by the CSADDR. All external symbols appearing in the Define Record for the control section are also enterted in to ESTAB. Their addresses are obtained by adding the value specified in the DefineRecord to CSADDR.

```
Pass I:
  get PROGADDR from operating system
  pagin
  set CSADDR to PROGADDR (for first control section)
  while not end of input do
     begin
        read next input record (Header record for control section)
        get CSLTH to control section length
        search ESTAB for control section name
        if found then
           set error flag (duplicate external symbol)
        alse
           enter control section name into ESTAB with value CSADOR
        while record type # 'E' do
          begin
               read next input record
               if record type = 'D' then
                  for each symbol in the record do
                     becin
                         search ESTAB for symbol name
                         if found then
                             set error flag (duplicate external symbol)
                         else
                             enter symbol into ESTAB with value
                                 (CSADDR + indicated address)
```

end (for)

end (while # 'E') add CSLTH to CSADDR (starting address for next control section) end (while not EOF) end (Pass 1)

Figure 3.11(a) Algorithm for Pass 1 of a linking loader.

```
begin
set CSADDR to PROGADOR
set EXECADOR to PROGADOR
while not end of input do
      read next input record (Header record)
   begin
      set CSLTH to control section length
      while record type # 'E' do
         begin
            read next input record
            if record type = 'T' then
               begin
                   (if object code is in character form, convert
                      into internal representation)
                   move object code from record to location
                       (CSADDR + specified address)
               end (if 'T')
            else if record type = 'M' then
               begin
                   search ESTAB for modifying symbol name
                   if found then
                      add or subtract symbol value at location
                          (CSADDR + specified address)
                   elsa
                      set error flag (undefined external symbol)
               and (if 'H')
        and (while # 'E')
      if an address is specified (in End record) then
         set EXECADOR to (CSALOR + specified address)
      add CSLTH to CSADDR
  and (while not BOF)
jump to location given by EXECADDR (to start execution of loaded program)
```

- address for the next southerd section in sequence.
  - external symbols defined in the set of control sections degether with the address arrighted to each.
    - to print a loadmap that shows these symbols and their addresses. (3.11 & 3.12 figs).
- Pass 2, of our loader performs the actual loading, relocation and linking of the pym.
- DAS each Text record is read, the object code is moved to the specified address ( plus the current value of CSADDR).
- 2) Nhon a Modification record is encountered, he symbol whose value is to be used for modification is looked up in ESTAB
- 3) This value is then added to ar subtracted from the indicated location in the memory
- 4) The last step performed by the loader is usually the transfering of control to the locaded

Program to begin execution. o The end record for each control section may contain the address of the first instruction in that c.s to be executed. Our loader takes this as the transfer point to begin execution. - If more than one control section specifies a transfer address, the loader arbitrality uses the last one encountered. If no C.S contains a transfér address, the boader uses the beginning of the linked pym (ie proximal) at the transfer point. Normally , a transfer address would be placed in the END record for a main pgm, but not for a - This algorithm can be mude more officient. Assign a reference number, which is used Constant of symbol name) is modification records, to each external symbol referred to in a control section. Duppose ne always assign the deference number 01 to the control Section name.

3.3 MAXHINE INDEPENDENT LOADER FEATURES. a Loading and Linking are often thought of as an OS Service functions. Therefore, most loaders includes fever different features than are found in a typical anembler. They include the use of an automatic library search process for hundling extegnal beforence and some common options that can be selected at the time of loading and linking. 3.3.1 Automatec Library Search Routines from a subprogram library is to the program being loaded. . The subroutines called by the program being loaded are automatically fetched from the library, linked with the mein program, and baded. The programmer only needs to mention the submertine names as external references in the Source program. This feature is referred au automatic leprary Search) · Linking louders that suppost automatic library seasch must keep brack of external symbols that are referred to, but not defined, in the principle input to the louder. The symbols from each refer record

marked to indicate that the symbols has not yet be

- when the definition is encountered, to address assigned to the symbol is filled in to complete the entry.

The loader Searches the library or libraries specified by routines that contain the definitions of these symbols, and processes the subrachine found by this search preactly as if they had been part of the primary i/p stream.

- The Subrocetimes fetched from a library themselves contain external references. It is therefore hecessary to repeat the library Seasch process cirtil all the references are resolved. It corresolved external references demain after the library reach is completed, these must be treated as error.

3.3.2 Loader Options:

Many loaders have a special command longuage that is used to specify options. Sometimes there is a separate enput file to the loader that antaly such control statements. Sometimes there statements can be included in the phimary uput stream blue object programs.

of alternative sources of 8/p.

The direct the loader to read the designated object program from a library and breat of as 16 H were part of the primary bader input.

symbols or enline control sections ex.

. DELETE CSECK- Name

It Instruct the loader to delete the normed corted control
Section (5) from the set of programs being budged.

· CHANGE name1, name 2

might cause the external symbol name 1 to be changed to name 2 whereever it appears is the object programs.

Loader oftion 3: Involves automatic inclusion of library houtines to satisfy external references.

Ex. LIBRARY MYLIB

such user defined libraries our normally securehed before the standard system libraries. This allows the rises to use special versions of the Standard soutines.

NOCALL STODEY, PLOT, CORREL.

To instruct the louder that there external reformes over to be remain un herolved. This groids the overhead of loading a connected hours ness, and saves the memory space that would otherwise be yequijed

Consider fig. 2.17 copy as main pgm and RDREC,

WRREC as subprograms.

Suppose that a set of will by programs (Subroutine) is

made available on the computer s/m. Two of here

READ & WRITE are designed to perform the same function as RDREC and WRREC. It would be destrable to change the source pgn of copy to use these

utility routines, READ EWRITE.

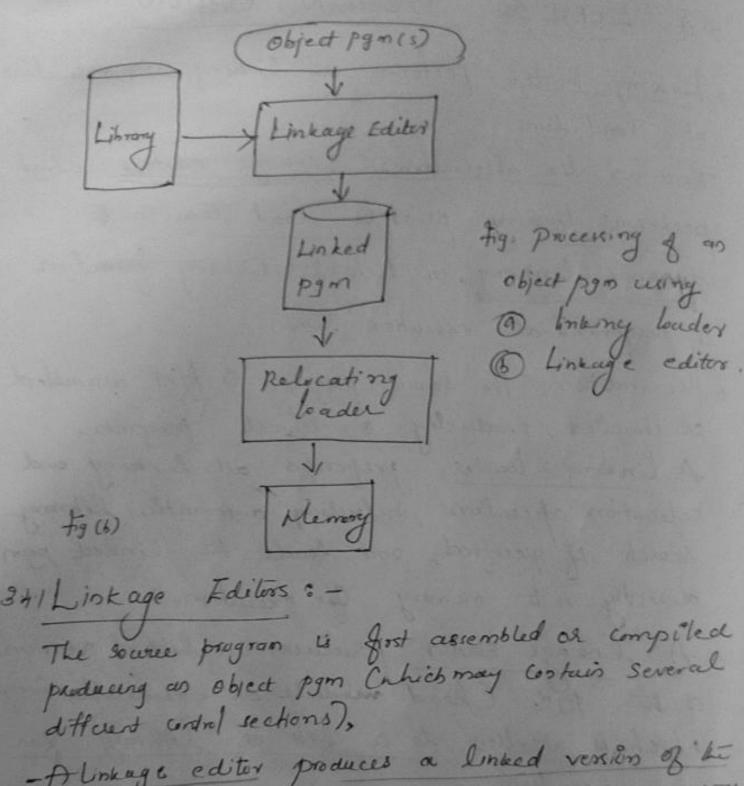
So the loader Commands:

INCLUDE READ (UTLIB)

INCLUDE WRITE (UTLIB)

DELETE ROREC, WRREC

CHANGE RDREC, READ


CHAME WRREC, WRITE

These Commands would direct to loader to include Control Section READ & WRITE from library UTLIB & to delete central sections RDREC & WREEC from the load. The CHANGE Commands evold cause all external references to symbol RDREC !

WREEC to be changed to refer to symbol RDREC!

READ /WRITE.

OPTIONS DESLON 5.4 LOADER · Linking loader performs all linking and relocation at load time. There are two alternatives: Linuage editors which performs lineing prior to load time. & dynamic linking, in which the listing function a performed at execution time. o precondition: The source program à first assembled A linking loader performs all linking and relocation operations, including autimatic library search, of specified, and loads the linked pym directly is to memory for execution. - A lineage Edites produces a linked version of the figm Cloud module or executable ineque) which is written to a fik or library for later execution. - The essential difference blu lineage editor & a linking leader is illustriated as (object pgm(s)) Linking Library loader



-Alineage editor produces a linked version of the pgm ( often called a load module or an executable image), which is written to a file or library for later enembion.

- when the user is heady to seen the linked used to load the pgm in to memory.

The linkage editor performs relocation of all control sections relative to the stoot of the linked program. Thus all items that need to be modified at load time have values that are relative to the stoot of the linked program.

This means that the loading can be accomplis-

This means that the loading can be accomplished in one pass with no external symbol lable leguined.

He a program & to be executed many times without being reassembled, the use of lineage editor substantially hedules the overhead required.

Linkage editors can perform many useful functions besides simply preparing an object pym for execution.

Ex. a typical sequence of linkage editor commands used:

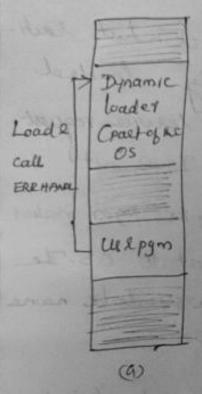
[INCLUDE PLANNER ( PROGLIB)

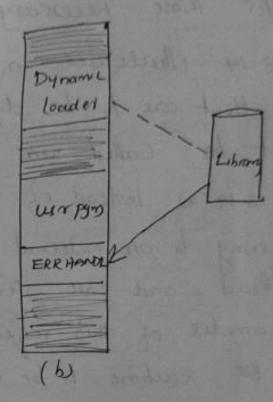
DELETE PROJECT { delete from raisting planner}

NICLUDE PROJECT (NEWLIB) { include new version}

REPLACE PLANNER (PROGLIB). ]

• Linkage editors can also be used to build packages of subsocitions or other control ections that are generally used together. This can be resepul when clealing with but how he libraries that support high level proglemoning languages.


· his lage editors often include variety of


other options and commends like those is lineing o Compared to linking loaders, linkage editors in general tend to offer more flexibility and control 3.4.2 Dynamic Linking: o Linkage editors perform linking operations before the program is loaded for menution at load time. at load time. · Dynamic linking i dynamie loading, or load on call - postpones the linking function centil execution time: a subnoutine is located when It is first called: o Dynamie Linking is often used to allow several executing programs to share one copy of a Subroutine or library, ex. Sentine support houtines for a high level longuage like C e colle a program that allows its user to Interactively call any of the Subsocitiones of a large mathematical and statitical library, all of the library subsoutines

could potentially be needed, but only a bew will actually be used in any one execution. Dynamie linking can avoid the recessity of loading the entire library for each execution except those necessary submetimes. Fig3.14 illustrates a method is which lastnes that are to be dynamically louded must be called via an Os service request. Fig-3-14(a): Instead of executing ISUB inst? referring to an exclusional symbol, the togon makes a loud - and - call service request to 05. The parameter of this request is the symbolic name of the Rachine to be called. fig - 3, 14(b) Os examines its internal lattesto defermine whether or not the loutine is atready loaded. If necessary, the noutine is loaded from the specifical user or system libraries. Fig 3+14(C): Condact & then passed from 08 to the eachne being called. Fig. 3-14(d): when the called Subsochine completes it processing, Et setions to its caller ( is O) Os this setums control to the py on that

Issued the request.

Fig. 3 14 (es: If a sub routine is still is memory a second call to 14 may not require another load of second call to 14 may not require paned from abelation. Control may simply be paned from the dynamic loader to the called southine.





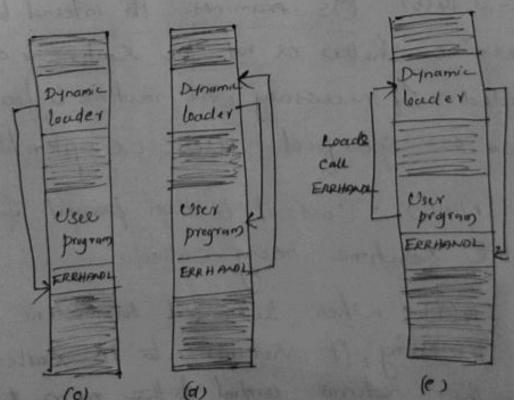



Fig. 3.14 Loading & calling of a subtoutine using dynamic

## Boot Strap loaders o Gilven an idle computer with no program is memory, how do we get thengs slowted? o On Some compulers, an absolute loader pgm is permanently herident in a readonly memory CROM). when some haldware signal occurs, the machine begins to execute this. pgm. This is referred to as a boot steap loader.

X

dielle

#### UNIT Y

Macro Processor:

Macro instruction definition and expansion.

One pass mairoprocessor algorithm and Data structures.

Machine independent Macro processor features.

Macro processor design oftions:

A macro instruction Cabbieviated to macro is simply a notational convenience for the programmer of A macro represents a commonly used group of Source Source source.

Expanding macros:

The macro processor replaces each heacro instruction with the corresponding group of Source language statements. This is called expanding the macros. for ex. Suppose that to save the contents of all registers before calling a subprogram. On SIC/XE this would require a sequence of Seven instructions (STA, STB, etc).

o Using a macro instruction, the programmer could simply write one statement like SAVEREGO

This macro instruction expanded in to seven assembler language instructions needed to save the Augister contents related to the architecture of the computer of which It is to hum. The most common use of mercio processors is in assembles language programming. o Maioro Processors can also be used with high-level programming languages, Os command languages, etc. Expanded program A program with macro definitions & macro invocations Mairo f) pgm without Macro definitions Fig Basic Mairo processos Junctions. ( Object pgn)

Assistant Company

# 4.1 BASIC MACRO PROCESSOR FUNCTIONS ofundamental functions of that one common to all mains processors 4.1.1. > Processes of macro definition, invocation and expansion with substitution of pasameters These on illustrated with sicker cirembles language

41.2 - One par algorithm for simple macro processing

#### 4.1.1. Macro Definition and Expansions-

fig-4.1 shows an ex. of a sic/x = pgm cuing macro instructions. This pgm defines and uses two macro instructions, RDBUFF and wRBUFF.

[RDBUFF main is similar to the RDREC sub routine].

- The definitions of these maire instructions appear in the source pym following the start

ei Line 10: ROBUFF MACRO SINDEN, & BUFFER, & RECLTH

bounded the meri sylveris one of provedo.

Two new axember directives (MACRO and MEND) are used in MACRO definitions.

o The first MARRO statement in (line 10) identifies Lo beginning of a MARRO definition. The symbol is the label field (RDBUFF) is the name of the macro and entires in the operand field feld feel flentifies the parameters of the macro instruction. In our macro language, each parameter begins with the character &, which facilitates the substitution of parameter during macro expansion

```
Line 10 RDBUFF MACRO LINDEV, RBUFFDR, RRECOTH

Parameters

20 MACRO TOREAD RECORD INTO BUFFER

25 :
30 CLEAR X
CLEAR A

:
RD = X | RINDEV'
COMP A, S

:
95 MEND -> End of macro obefinition.
```

prototype for the macro instruction reced by
the programmer.

+ Following the macro directive are the statements that macro definition (line 15 through 90). These are statements that will be generated as the expansion of the macro -

of the maero definition.

The definition of the WRBUFF macro (lines loo to rough 160) follows a sontlar fattern.

|          | Line                                    | Source state          | ement               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|----------|-----------------------------------------|-----------------------|---------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| *        | (X)PY                                   | START                 | 0                   |         | COPY FILE PROM I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PREMIAL     | TO CUTPUT   |
| 10       | RUBUFF                                  |                       | aindev.abup         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The fire    |             |
| 15       | 110                                     |                       |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 20       | 4 8                                     | MACRO N               | O READ RECORD       | 1171    | O BUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |             |
| 25       | •                                       |                       |                     |         | in the second se | a sware a   |             |
| 30       |                                         | CLEAR                 | X                   |         | CLEAR LOOP COUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 2 2 2     |             |
| 35<br>40 |                                         | CLEAR                 | A                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 45       |                                         | CLEAR                 | S                   |         | SET MAXIMUM RECO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ORD L       | ELKITH      |
| 50       |                                         | +LDT                  | #4096<br>=K'AINDEV' |         | TEST INPUT DEVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 55       |                                         | TEO                   | *-3                 |         | LOOP UNTIL READ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 60       |                                         | RD                    | N' & INDEV'         |         | READ CHARACTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UMPO        | RDG A       |
| - 65     |                                         | COMPR                 | A,E                 |         | TEST FOR END OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RECO        | RD          |
| 70       |                                         | JEQ                   | *+11                |         | EXIT LOOP IF EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IR          |             |
| 75       |                                         | STOH                  | ABUFADR, X          |         | STORE CHARACTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I III E     | UPFER       |
| 80       |                                         | TIXR                  | T                   |         | LOOP UNLESS MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LIMIN       | LENGTH      |
| 85       |                                         | diar                  | • -19               |         | HAS BEEN REAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |             |
| 90       |                                         | STX                   | ARECLITH            |         | SAVE RECORD LEZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KITH        |             |
| 95       |                                         | MEND                  |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 100      | WRBUFF                                  | MACRO                 | ROUTDEV, &B         | UFAD    | R, &RECLITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |             |
| 105      | . 91                                    |                       |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 110      |                                         | MACRO T               | O WRITE RECO        | RD F    | ROM BUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |
| 115      |                                         |                       |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w were the  |             |
| 120      |                                         | CLEAR                 |                     |         | CLEAR LOOP COU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.A t. 124. |             |
| 125      |                                         | LDT                   | &RECLITH            |         | GET CHARACTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | erso/ va.s  | MIFFER      |
| 130      |                                         | LIXCH                 |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | LOCAL & MAR |
| 135      |                                         | TD                    | *X, YOULDEA,        |         | TEST OUTPUT DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |
| 140      |                                         | JEO                   | •-3                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 145      |                                         | WD                    | =X'SOUTDEV'         |         | WRITE CHARACTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | PACTURES    |
| 150      |                                         | TIXR                  | T                   |         | HAVE BEEN W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |             |
| 155      |                                         | JUI                   | *-14                |         | HAVE DEEN HE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | •           |
| 160      |                                         | MEND                  |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 169      |                                         |                       |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 170      | * * * * * * * * * * * * * * * * * * * * | MAIN PH               | COGRAM              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 175      |                                         |                       |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | commence.   |             |
| 180      | FIRST                                   | BTL.                  | RETADR              |         | SAVE REIGIRN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.A.Hun     | 127         |
| 190      | CLOOP                                   | RDBUFF                | FL. BUFFER,         | LEW     | ITH READ RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LI INI      | BUFFER      |
| 195      |                                         | (474                  | LENGTH              |         | TEST FOR END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )F E        |             |
| 200      |                                         | COMP                  | #0                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|          |                                         | JEQ                   | ENDFIL              |         | EXIT IF BUF F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |             |
| 205      |                                         | WENTER                | 05, BUFFER.         | LEW     | STH WRITE OUTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UT RE       | CORD        |
| 210      |                                         |                       | CLOOP               |         | LOOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |
| 215      |                                         | 1.1<br>1.80 tol 1170' | OS FOR THE          | RE      | INSERT BOF M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | APAEP       |             |
| 220      | ENDFIL                                  |                       | GRETADR             | Jan San |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 225      |                                         | J.                    |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 230      | BOF                                     | HYTE                  | C'EOF'              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 235      | THREE                                   | WORD                  | 3                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 240      | RETADR                                  | RESW                  | 1                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 345      | LENGTH                                  | RESW                  |                     |         | LENGTH OF RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |             |
| 1417     | BUFFER                                  | RESE                  | 4096                |         | 4096-BYTE BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IFFER       | ARHA        |
| 250      |                                         | EMD                   | FIRST               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 255      |                                         |                       |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| 125      |                                         |                       |                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |

Figure 4.1 Use of macros in a SIC/XE program.

| ine                                      | Source statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anada a da d | in the second                                   |                          | OURY FILE FROM INDAM TO OUTPON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                          | CAMIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33414                                      | (i)<br>Transportation                           |                          | MAVE BETURN ALABASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                          | * 15/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1684                                       | reinik<br>Fi. buspah, lebuh                     |                          | REAL RECORD INTO BUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rightma                                    |                                                 | and the American Control | CLEAR LOOP COUNTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13342                                    | Christian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CA (\$40)                                  | ă<br>ă                                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 184                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLEAR                                      | 8                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TYPE TO                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.508                                     | #4DB6                                           |                          | SET MAXIMUM RECORD LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147                                        | - X   E                                         |                          | TEST INPUT DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.8-149                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                          | OOP (BUTTL READY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1004                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/2                                       | ak(F)                                           |                          | READ CHARACTER INTO REG A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 174-W                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (i)                                        |                                                 |                          | TEST FOR END OF RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.8.41                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.1                                       | A, S                                            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1964                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1802                                       | 9 + 3 1.                                        |                          | EXIT LOOP IF EOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 311 x 1                                    | BUFFER,                                         |                          | STORE CHARACTER IN EUPPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| i dule.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Take                                       | T                                               |                          | LOOP UNLESS MAKINUM LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Adais                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.8                                        | *-19                                            |                          | HAS BEEN REACHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13444                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 918                                        | LEAKETH                                         |                          | SAVE RECORD LEMOTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| · 報告                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1420                                       | LEGATH                                          |                          | TEST FOR END OF FILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AND<br>AND                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMP                                       | #()                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dub                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JBQ                                        | MIDE II                                         |                          | EXIT IF BOF FOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CAT-                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SERVER F                                   |                                                 | ER, LENSTH               | WRITE OUTPUT RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N. A.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLEAR                                      | X                                               |                          | CLEAR LOOP COUNTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 114                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lift                                       | LENEAH                                          | (4)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 john                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EX H                                       | BUFFER,                                         | A                        | GET CHARACTER FROM BUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 61368<br>3100                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JEO                                        | ,一张"自我"<br>———————————————————————————————————— |                          | LOOP UNTIL READY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2101                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tal                                        | -X'05                                           |                          | WRITE CHARACTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 71164                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERR                                       | 4                                               |                          | LOOP UNTIL ALL CHARACTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 216h                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne.                                        | * - 14                                          |                          | HAVE BEEN WRITTEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 345                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                          | CLOSE                                           |                          | LOOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                          | . DMDF 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HHUFF                                      | 05. EOF.                                        | DIREC                    | INSERT BOF MARKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Yina                                     | broth it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CLEAR                                      | X                                               |                          | CLEAR LOOP COUNTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13-25                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,177                                      | THEFE                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3700                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOT                                        | A.F.X                                           |                          | GET CHARACTER FROM BUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.003                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | III                                        | -2 · 115 ·                                      |                          | TEST CLIPPUT DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2306                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JEX                                        | 1-1-1                                           |                          | LOOP OWITH READY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1011                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.1                                       | #X 1157                                         |                          | WRITE CHARACTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIXE                                       | *                                               |                          | LOUP DESTIL ALL CHARACTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Siste.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JLT                                        |                                                 |                          | HAVE BEEN WRITTEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | BRETADH                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. 23%                                   | 113.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BYTE                                       | C'BOF                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          | THEFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 设计目                                        |                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          | RETACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEAV                                       |                                                 |                          | to some accordinate to the standard of the sta |
|                                          | entri en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RESW<br>RESE                               | 4096                                            |                          | LENGTH OF RECORD  4096 BYTE BUFFER AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                          | The second secon | E2E)                                       | FIRST                                           |                          | A. C. S. E. S. S. C. C. S. S. S. S. A. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Figure 4.2 Program from Fig. 4.1 with macros expanded.

The main program begins on line 180. The statement on line 190 is a main invocation statement that gives the name of the main firstruction being Invoked and the name of the main in expanding the main.

The arguments to be used in expanding the main.

The arguments to be used in expanding the main.

The arguments to be used in expanding the main.

The arguments to be used in expanding the main.

The arguments to be used in expanding the main.

The arguments to be used in expanding the main.

dine 190 CLOOP RDBUFF FI, BUFFER, LENGITH

Johnson Cuguments.

The pgm in fig. 4.1 supplied as i/p to a macro processor. frg 4.2 shows the output that would be generaled.

The macro instruction definitions have been deleted since they are no longer needed after the macros are expanded

- tach mairo invocation statement hus been expanded Ento the statements that forms the body of the macro, with the arguments from the macro invocation substituted for the parameters in the macro prototype.
- The aggements and parameters are associated with one another according to their positions.
- the first argument in the macro innocation corresponds to the first parameter in the macro prototype, & soon
- In expanding RDBUFF &I, BUFFER, LENGITH

  FI is substituted for & INDEV

  BUFFER is " & BUFFADR

  LENGITH is " & RECLITH

- Lines 190 a through 190m show the complete expansion of the macro invocation on line 190 (fig 41)
- to read Record into BUFFER (41)] have been deleted, but comments on inclinidual statements
- The label on the macro invocation stood (CLOOP)

  has been retained as a label on the first stonthas been retained as a label on the first stontgenerated on the macro expansion. This allows

  the programmer to use a macro instruction in

  the programmer to use a macro instruction in

  exactly the same way as an assembles language

  mnemonic.
  - can be used as input to the assembler.

The mairo invocation statement will be theated as comments (be coz, there statements need not be assembled).

Macro defn

eg - WRBUFF MACKO LOUTDEV, RBUFADR, REGUTH
CLEAR X

LDT & RECLITH

LOCH & BUFADIR

TD = X' & OUTDEV'

JEQ \* -3

LD = X & SCUTDEV'

TIXK +

CURBUFF 05 , BUFFER , LENGTH

on Expanding

Clear X

LDT LENGITH

LICH BUFFER, X

TD = X '05'

JEQ # -3

LJD = X '05'

TIXR \$ T

JLT \$ -14

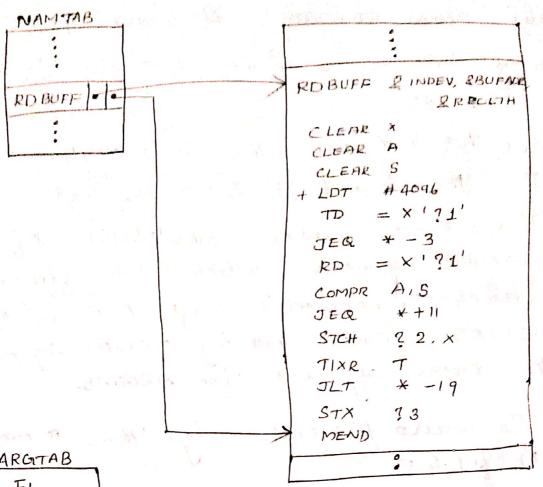
Macro Processor Algorithm & Dalastenetures

It is easy to design two pass macro processes

- Pass 1:

o All macro definitions are processed.

- Pass 2:


o However, a two pass macro processor would not allow the body of one macro instruction to contain definitions of other macros (because all macros would have to be defined during the first would have to be defined during the first pass before any macro invocations were preparated). Pass before any macro invocations were preparated for ex. the two macro instruction definitions in fig 4.3. The body of the first macro (macro) in fig 4.3. The body of the first macro (macro) in fig 4.3. The body of the first macro (macro) in fig 4.3. The body of the first macro (macro) instructions of the macro instructions of the passes in figure of the macro instructions for a system.

The body of the second macro instruction (markets) define these same macro for a sic/xt s/m - A pgm could run on a standard sic strong invoke macros to define other utility instrus - A pgm for a SIC/XE s/m could broke MACREX to define these same mairos in there XE venions - Same pym could you on either a standard sie machine or a SIC/XE machine - Defining MACROS OR MACROX document define LOBUFF LOKER main instructions These definitions are processed only when are invocation of MACROS OR MACROX is expended 1 MACROS MACRO { Defines SIC Std Version Macros} 2 KDBUFF MACRO LINDEN, LBUFADR, RRECLIH MEND f End of RDBUFF] 4 WRBUFF MACKO & CUTDEN, & BUFFIDE, RECLAH MEND { End of WABUFF} MEND [ End of MACROS ] (a)

| i                                                                 | MACROX                                                | MACRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Defines sic/x =        | mainis]    |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|--|--|
| 2                                                                 | RDBUFF                                                | MACEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | & INDEV, & BUFADR      | , R PECLTH |  |  |
|                                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| 3.                                                                |                                                       | MEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | { End of ROBUR         | F}         |  |  |
| 4.                                                                | WRBUFF                                                | MACRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | & OUTDEV, & BLEADI     | Z, QRECLTH |  |  |
|                                                                   |                                                       | e de la compansión de l | 4 6 4                  |            |  |  |
| 5.                                                                |                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FENd of WRBU           | FFJ        |  |  |
|                                                                   | and the state of                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A trade a constitution |            |  |  |
| 6.                                                                |                                                       | MEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | { End of MACI          | 20×3       |  |  |
|                                                                   |                                                       | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ace oraș i all         | State July |  |  |
| 4 Fig                                                             | tig. 43 Ex. of the definition of macros within a main |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| Deb-main definitions are only processed when on                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| Privocation of their Super-macros are expanded.                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
|                                                                   | _                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cessor - that c        |            |  |  |
| $\Rightarrow A$                                                   | One pass                                              | - Vocacio più                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The hall all           | mian is    |  |  |
| between macro definition and macro expansion is                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| able to handle maleros like in Fig 4,3                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| . 7                                                               | Dass Structure, the de to more of as made of          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| must appear in the source pgm before any statements               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| Het is also that melero.                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| that imoke that maero.  3 Data Structures for the mucroprocessor. |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| 3 Das                                                             | a Structures                                          | Fer the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PHONE CALLED           | ă.N        |  |  |
| · DEFTAB (Definition table)                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| · NAMTAB (Name table)                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
| · NAMTAB (Name table)<br>· ARGITAB (Agument table).               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |  |  |
|                                                                   |                                                       | O i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                      |            |  |  |
| Water Street                                                      | and the second second                                 | 这些特别是 <b>阿</b> 森斯克克                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |            |  |  |

- officialism definitions themselves are showed as obtained to the finition dable ( DEPTAB), which contents made made prototype and the statements that make the main body ( with a few moderfications)
  - not entend into DEFTHE because they am not be part of the macro expension
- efficiency in substituting arguments.
- NAMITAB which serves as an index to server to server as an index to server to each macro instruction defined, where Contain points to the beginning and end of the definition in DEFTAB
- The third data structure is an asymment table CARGITAB), which is used during the empersion of macro invocations. When a macro invocation statement is tengenzed, the asymments are stoned in ARGITAB according to their position is expanded asymment list Pos the macro is expanded asymments from ARGITAB are substituted for the Carresponding parameters in the herero body.

there lables during the processing of the point



ARGITAB

1 F1
2 BUFFER

2 LENGITH

(b)

(a)
Fig. 74.4 contents of macro processor
lables for the pgm in fig. 4.1 (a) entries
in NAMITAB. and DEF TAB defining
macro RDBUFF,
(b) entries in ARGITAB for invocation of
RDBUFF on line 190.

The positional motation of RDBUFF stored to the prototype).

Le prototype).

ty (446) shows ARGITAB It would appear during expansion of the RDBUFF stmt-

For this invocation, the first argument is \$1, the second is BUFFER, etc.

This scheme makes substitution of macro againents much more efficient.

- DEFTAB, a simple indexing operation supplies the proper argument from ARGITAB.
- o The macro processes algorithm is presented in fig. 4.5
- othe procedeure DEFINE, which is called when the beginning of a macro def n is recognized, makes the appropriate enteres to DEFTAB '2 NAMTAB.
- · EXPAND is called to setup the argument values in ARGITAB and expand a main fivo cation start. The proceedine GIZILINE which is ealled at several points in the algorithm, gets the next line to be processed. This line may come from DEFTAB: ( the next line of a macro being expanded) or from the 1º/p 20/e depending upon whether a Boolean variable EXPENDING is set to TRUE OR FAISZ.

else if OPCODE = 'MACRO' then
 DEFINE

else write source line to expanded file
end {PROCESSLINE}

Figure 4.5 Algorithm for a one-pass macro processor.

```
procedure DEFINE
   begin
      enter macro name into NAMTAB
      enter macro prototype into DEFTAB
      LEVEL := 1
      while LEVEL > 0 do
          hegin
             GETLINE.
             if this is not a comment line then
                    substitute positional notation for parameters
                    enter line into DEFTAB
                    if OPCODE = 'MACRO' then
                        LEVEL := LEVEL + 1
                    else if OPCODE = 'MEND' then
                        LEVEL := LEVEL - 1
                 end (if not comment)
          end (while)
      store in NAMFAB pointers to beginning and end of definition
   end (DEFINE)
```

```
begin
       EXPANDING := TRUE
       get first line of macro definition (protorype) from DEFTAB
       set up arguments from macro invocation in ARGTAB
       write macro invocation to expanded file as a comment
       while not end of macro definition do
          begin
              GETLINE
              PROCESSLINE
          end (while)
       EXPANDING := FALSE
   end (EXPAND)
procedure GETIANE
   begin
       if EXPANDING then
          begin
              get next line of macro definition from DEFTAB
              substitute arguments from ARGTAB for positional notation
          end (if)
       else
          read next line from input file
   end (GETLINE)
 Figure 4.5 (cont'd)
```

procedure EXPAND

This algorithm's: the handling of macro definitions within macros ( in fig 4.3). when a macro defo is entered into a DEFTAB, the resmal approach would be to continue until an mEND. directive is reached. The MEND on line 3 (which actually makes the end of the po definition of PDBUFF). would be taken as the end of the definition of mackers. To some this problem 1000 DEFINE procedure maintaires a countre nomed LEVEL. Each time a mocko dorectore is read, the value of LEVEL is increased by 1

each done on NEND director is read, the value of LEVEL is decreared by 1. nds to he original MARCRO disactive hasbur found. This process is very much like matching lest and eight pourthers when sconning an withmeter repression.

· Most moure prousers allow the definitions of community used macro instructions to appears in a standard system library, rather than the source Bym. This makes the we of such macros much more convenient. Definitions are retrieved from this library as they are morded during macro processing. 6. 50 211100

#### 4.2 MACHINE INDEPENDENT MACRO PROCESSOR FEATURES.

The design of main processor doesnot depend - This section explains some extended feature for his macro processor. These features are:

- · Concatenation of Macro parameters
- · Greneration of unique labels · Conditional macro expansion
- · keyaoid macro parameters.

# 4.2.1 concation of macro passimeters

Most macro phoiessors allows paramy to be concadenated with other character 16, - Suppose that, for ex, a pgm cordains Series of variables named by the symbol. XAI, XA2, XA3, ... another series named by XBI, XB2, XB3 --- etc. If simplar processing Ps to be performed on each sence of navalles the programmer put this as a merero instruction The parameter to such macro instruction way specify the series of variables to be operation on (A,B, etc). The macro processor would be their palameter to construct the symbols in red in the macro expansion (XA, XBI, etc).

- Suppose that the parameter to such macro instruction is named &ID. The body of the new deft contain a strest like

LDA X&ID1

In which parameter ID is concadenated after the character string x and before the character. String 1.

- problem with this statement is, the beginning of the main parameter is ordered by his starting symbol &; however, the end of the parameter is not marked.

The operand in the 4-st represent the character start of X followed by the parameter & IDI.

Att RID and RIDA as parameter the strature hould be unoveidably ambiguous

providing a special concatenation operator.

In the 5k macro language, this operator is the character  $\rightarrow$ . Thus the previous start withen as

LDA X&ID →1

So that the end of the parameter Sett is clearly identified. The prowners deletes all occurrences of the concadenation operates more tely after performing parameter substitution so the character -> will not appear in the main expansion.

the concatenation operates. 4.6 (b) 2(c)

Shows macro invocation. Starts and corresponding macro expansion

I SUM MACRO 2 ID

LDA  $X = 1D \rightarrow 1$ ADD  $X = 1D \rightarrow 2$ ADD  $X = 1D \rightarrow 2$ ADD  $X = 1D \rightarrow 3$ STA  $X = 1D \rightarrow 3$ MEND

(4.6) (a)

SUM A BETA Sum XAI XBEIAL LDA LDA XA2ADD XBETTO2 PDD XAB A-DD ADD X BETTIS XA 5 STA SA XBETAS 4(6) Fig Concatenation of macro parameters. 4.2.2 Greneration of Unrque Labels Consider the definition of WRBUFF in fry 4.1. JA a label were placed on the TD instruction on line 135, this label would be defined twicefor each inocation of WRBUFF. This deplicate definition would prevent correct assembly of the resulting expanded pgm. WRBUFF MACRO & OUTDEV, & BUFFOR, RETCLITH CLOOP TD = X' & OUTDEV' JEQ CLOOP In Fig 4.1, the WRBUFF is called livre. They this statement is expanded twice, once for each inocation of CURBUFF. 1 WRBUFF OS, BUFFER, LENGTH CLOOP TD = X'05' CLOOP WRBUFF OS, EOF, THREE CLoop TD -X '05/ expanded state.

Fig. 47 PHEIStrates one technique for generating unique labels with it a macro expension of definition of the RDBUFF mauro is shown in fig 4. of Ca) Labels used with in the maine body begin with a special Special character \$

Fig. 4.7 (6) shows a macro invocation stant & there salting mais o expansion.

MACRO & INDEV, ROUFADR, REECLIA 401 RDBUFF CLEAR X

> \$ Ecop TO = X' &INDEV!

JLT \$LOOP

4(b) ROBUFF FI, BUFFER, LENGTH.

CLEAR X The man was a superior of the company of the second of the

\$ AALCOP TD = X'FI' JER SPALOUP.

fog hereration of unique busel With his macco responsion

Each Symbol beginning with & has been modified by heplacing \$ with \$AA. Note generally, the character \$ will be replaced by \$xx, where xx is a two character alphanumeric counter of the number of macro instructions expanded for the first meero expansion is a pgm, XX will have the value AA. - For Succeeding macro expansions, xx well be set to ABIAC , etc. By hp

(If only apphabelic and numeric characters are allowed to xx, such a two character counter provides for as many as 1296 macro expansions is a single pym.

This results to the generation of unsque latels for each expansion of amacro instruction.

4.2.3 Conditional Mairo Expansions

Most meiero processors, modify the sequence of statements general ed for a maiero reparesson, depending on the aeguments supplied in the made smouthin.

- Such a capability adds greatly to the powers.
  I lexibility of a macro language.
- This section present a typical set of conditional macro expunsion stellements.

-The use of one type of conditional macro expansion statement is illustrated in try

4.8. Fig. 4.8(a) shows definitions of a macro RDBUFF.

This definition of RDBUFF has two adolition and presenters & EOR, which specifies a hexadecimal chalacter code that movels the end of a record. I & MAXILITH, which specifies the merainem length hereal that can be read.

```
25 RDBUFF
                          & INDEV, LBUFFIDE, LRECLIH,
                MACRO
                                     SEOR, EMAXLTH
26
                11=
                         (REOR NE >9)
    & EORCK
                SET
                          1
27
28
                ENDIF
30
                CLETTER
35
                CLEAR A
38
                IF
                        ( & FORCK EQ 1)
 40
                        = X | REOR'
                LDCH
                RMO
                        AIS
                ENDIF
                       ( &MAXLTH
                                  EQ , ,)
             +LDT
                       # 4096
               ELSE
                       # MAX LTH
             + LDT
 47
             - ENDIF
  50 $LOOP
              TD
                       = XI & INDEV!
                       $ 100p
  55
              JEQ
  60
              RD
                       =X | &INDEV!
  63
                       ( REDROK EQ 1)
              IF
  65
                       AIS ...
              COMPR
                        $ EXIT
              JE Q
  73
              ENDIF
  75
             STCH
                       & BUFADR, X
   80
             TIXR
  82
                        $ LOOP
              JLT
  90 S EXIT
                      & RECLTH
              STX
  95
              MEND
                      4.8 (0)
    The Statement on lines 44 through 45 of this
    defor Phystrates a simple mouro-time conditional
```

Structure. The IF Statement evalualis a Booleg

that is its operend.

Scanned with CamScanner

If the value of this expression is TRUE the Statements following the IF are generated until an ELSE is encountered. Other use there statements are skipped, I the statements following the ELSE are generaled

- The ENDIF statement terminalishe conditional expression that was began by the IF statement

- Thus if the passameler & MAXLIA is equal to the null string, the statement on line 45 is generated.

Other wise the start on line 47 is generated.

Is used. This SET Stort assigns the value I to leave (also called a Set symbol), which can be used to store Working values during the macro processor directive (SET) is used. The symbol & EORCK is a macro time valuable (also called a Set symbol), which can be used to store working values during the macro expansion.

and that is not a macro instruction parameter is assumed to be a macro time vasiable.

Fig - 4.8 (b-d) shows the expension of three different macro invocation statements that flustrate the operation of the IF statements in fig (4.8 (a))

- The implementation of the conclutional movers expansion is that the macero processur.

must construin a symbolicable that contains

the values of all macro-time variables used. The fable is used to Entries in this table are made or modified when SET statements are processed. The table is used to book up the current value of a macro-time valiable whenever it is regented - When an IF Stadement is encountered during The expansion of a macro, the specified Boolean expression evaluated. It he value of this expr IS TRUE, the macro processor continues to process lines from DEFTAB Until A encounters the next ELSE OR ENDIF Start. If an ELSE is Found, the macro processor then skips lines in DEFTAB until the next ENDIF. Upon reaching the ENDIF, it resumes expanding the macro In the usual way. If the value of the specified Boolean expression is FALSE, the macro processor SKPPS ahead in DEFTAB until It finds the result ELSE OR ENDIF Stort. The maisso processor then resumes the normal macro expansion. - It is estremely important to understand that the lesting of Boolean expression in 17 Storts Occurs at the time macros are expanded. By the time the pgm is assembled, all such decisions have been made. The maioro-time 1E-ELSE-ENDIF Structure provides a mechan nism for either generating or skipping schooled

```
Stevements of the macon body
                Expanding the mains from 4, 17 BUF, RECL, OH, 2048
    Fig 4.8 60 -
   CLEAR
     CLEAR
                = X '04'
         LDCH
   RMO
              A,S
 A LL DT
               # 2048
 $AALOOP TD
               = x'F_B'
JEQ
               $ PALCOP
  RD.
              = X'F3'
COMPR
               AIS
               $ PA EXIT
JEQ
       STCH
               BUFIX
       TIXR
               7
               $ AALOOP
```

RECL.

SAAEXIT STX

- A different type of conditional macro expansion Statement is ellustraded in fig 4.9. Fig 4.9 (a) shows another definition of RDBUFF. The purpose I fun of the movers are the same before -Will this definition, the programmer can Specify a list of end-of-record characters In the macro invocation 8 front in fig 4.4/1, there is a list & (00,03,04) corresponding to the passimiler SEOR. Dry one of these characters Interpreted as marking the end of a neural. - The more record length always how

```
1
       A TORNEY AND PURE A NEW YORK A MICH.
                 MACON
4.00
                           $14丁宁的机-14200 TE
                 NA.
                 CLEMA
                           1
                                           CLEAR LAND CHAMPER
  100
                 1.22
                           *
  11.00
                          学业的特征
                                           CET MAN (EDANIM * 40%)
  1
       S. LEW
                 100
                           A - CHEST
                                           TRUT LIMIT DOVER
  整
                  1990
                           53.4 机弹
                                           TAKE THAT I MEALE
  80
                 100
                          -1-ATMAN
                                           READ CHARACTER INTO RES A
 16.5
       197
 有捷
                 MATTE
                           TAKETH LE ASSESSORY!
 100
                 COMP
                          ·第二位自身的新和企业(M2.4.00.)。
  1
                  100
                           SERT
  170
       140,775
                  ST.
                           MTEST.
  1
                 物配料
  15
                 SKN
                           4.据序列第 8
                                           STORE CHARACTER IN BUTTER
  题
                 TIME
                                           LAND CREATE MARTHEM LENGTH
 A.
                  31.27
                           STATE
                                             MAS BURN REACHED
 北部北京节
                  -
                           从影影了。在1
                                           SAME PRODUCT LEBESTH
 1-4
                 MONEY.
                                    181
                 NUMBER OF STREET
                           FE, MIRPOR LEMENT 100, 01, 041
  401
                           100
                                           CLEAR LOOP COMMITTEE
                 CLEAR
  1
                 CLEAR
                           A
  4
                 · 1.13
                          并非口领的
                                           GROW MAIN LEGATOR = 4096
  SAAL(X)
                                           TEST INPUT DEVECE
                                           LOOP ONTIL REALTY
  Table.
                  180
                           SAALOOP
                                           READ CHARACTER INTO REG A
                          3. E3.
  10.0
                 1997
                  ME
                  1987
                           SAAHXIT
                 17 847
                          X 000001
                           SAABXIT
                 . 77.
                  TAKE
                          *X 000004
                           SAAERTT
                  M.
                           HOFFER X
                  MEN
                                           STORE CHARACTER IN SUFFER
                                            LANT UNLESS MAXIMUM LERKITH
 1
 验与
                 JL.T
                           SAALOOP
                                            HAS BEEN REACHED
                 -
                                           SAVE BECORD LEWITH
 De la
      CAASTYTT
                           HIDEL
```

Figure 4.9 Use of macro-time looping statements.

(0)

Scanned with CamScanner

the defn in fig 49(a) uses a macro time looping statement wither the comme start specifies that he following lines; dinted he next enow start, are to be generated, seperately as long as particular condition is like. It hope testing of his conclution and the looping, are done while the macro is beeing expanded. The conditions to be dested envolve macro time variables and arguments.

The use of the WHILE - ENDW Structure Plly beated on lines 64 through 73. of fig 4.94)
The macro time variable ( EORCT has previous been Set (line 27) to the value 9.NITEMS ( LEOR). YONITEMS is a practice processor function that leterns as pts value rumbu of members in an argument list.

For ex. If the argument corresponding to l EDR is (00,03,04), then %.NITEMS (REOK) has the value 3.

- The macro-time variable & CTR is used to count the noightimes the lines following the withle stand have been generaled. The value of &CTR is initialized to 1 ( line 63) & incremented by I each time through the loop (line 71) The WHILE stand Poselfies boat the macro time loop will continue to be executed

to the value of & EORCT.

the proper member of the list for each iteration of the loop. Thus on the first iteration the expression & EOR [ & CTR ] on line 65 how the value oo, on the second Pteration it has the value of 2 & 50 on.

- The implementation of a macro-terre leoping start: when a WHILE Statement Ps encountered during macro expansion, the specified Boolean expression is evaluated. If the value of this expression is FALSE the macroprocessor skips ahead in DEFTAIS until It finds the next ENDW statement, ethen resumes kormal macro expansion. If the value of the Bodean expression is TRUE, the macro processor continues to process lines from DEFTAB in the usual way untel the next ENDW start. When the ENDW is encountered, The mairo processor returns to the preciding WHILE, re-evaluates te Boolean paperenion and takes action based on the new value of this expression.

## keyword Main porameters · Parameters and arguments, were associated not each exer according to their partien is he make protoppe and the minemonion Statement with partitional parameters, the promover must be careful to specify to age in the proper order. If an argument and ometed, he masso inocation statement in contain a null agginent ( two consecutive com to maintain the correct agreement positions · Positional pasanders are quete sustay, for most macro instructions However, of a macro has a large no of parameters, ando a few of tie are given values in a typical invocation, a different form of parameter specification is more useful. · for ex, Suppose that, a certain macro instruction GIENER has 10 possible parameter but in a particular invocation of the main only the third 2 ninte parameters and to be specified. If positional parameters here rused, the main impeation start between

CHENER , DIRECT, , , , , 3
Using a different form of postameles perf
called they word postameles.

each agament value is walten with a superior of that names the corresponding parameter Agaments that names in any order. If the third parameter may appear in any order. If the third parameter is named of the previous ex, is named of the main institute parameter is named of the previous of the parameter is named of the provider. The main is named of the provider is named of the provider of the parameter is named of the provider of the parameter is named of the provider of the parameter is named of the provider of the provider of the parameter is named of the provider o

This start is easier to read & much error phone than the positional version

Fg: > RDBUFF MACKO SINDEV = FI, & BUFADR = , & RECLIH = , & EOR = OF, & MAKETH = 4096

In the orbore macro defor, each parameter, name is followed by an equal sign, which identifies a beguest parameter. After the equal sign, a default value is specified for some of parameters (2 INDEV = F, ). This parameter is a assumed to have this default value of pls name does not appear to the macro invocation statement. There is no default value by the parameter & BUFADR

the macrocall

RDBUFF BUFFADR = BUFFER , RECLTH = LENGITH

CLEAR A

A79(4.106)

the value of livory is specified as F3/ like value of leor is specified as f null. These villy overlides the corresponding defaults.

The arguments may appear is any coder is the macro inscation statement.

Fig 4.10.C

RDBUFF DECLIH = LENDTH, BUFFIDE = BUFFER,
FOR =, NOEV = F3.

CLEAR X CLEAR A

DXIT STY LENOTH.

## 4.3 MACRO PROCESSOR DESIGN OPTIONS

- e Major design aptions for a macro processor.
- o One pass macro processor algorithm does not work properly If a macro invocation slutement appears with in the body of the macro instruction.

4.3.1 Examines the problem's created by such macro invocation statements and possibilities for the solution by these problems.

4.3.2 - general purpose moino processors are not hed to any particular lamajurage

```
4-31 Recursive Macin Expansion
```

tig 4 11 3hows an example of - Invocation of one

It - There are chances where a macro Proceeding Statement appears with in the body of macro Instruction is invocation of one macro by other macro.

Ex. 4.11 Example of of nested macro invocation.

ROBUFF MACRO & BUFFER, &RECLTH, &INDEV
MACRO TO READ RECORD INTO BUFFER

CLEAR X

CLEAR A

CLEAR S

+ LDT #14096

\$LOOP ROCHAR &INDEV

COMP PIS

JEQ SEXIT

STCH & BUFFER, X

TIXR T

JLT \$Loop

SEXIT STX &RECLTH

MEND.

ROCHAR MACRO & IN

MACRO TO READ CHARACTER INTO PEGISTERA

TD = X ' & /N'

JEQ ¥-3

RD = x ' & W'

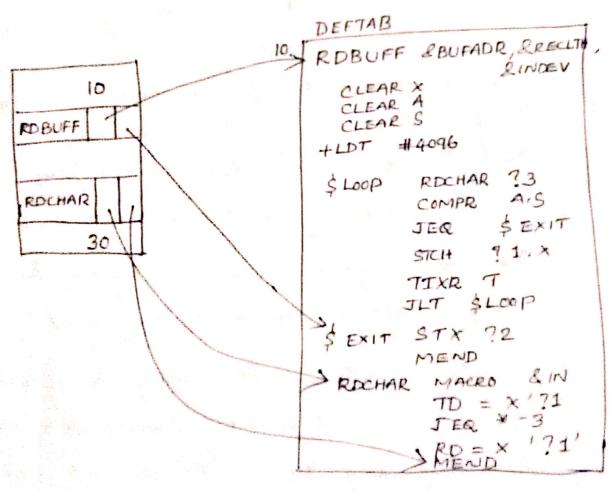
MEND (b)

RDBUFF BUFFER, CENDITY, IT -> when a such macro

EXPAND would be could be entered to precious as follows

| pa | reci | neter |  | value        |            |
|----|------|-------|--|--------------|------------|
|    | 1    |       |  | BUFFER       |            |
|    | 23   |       |  | LENGTH<br>11 |            |
|    | 4    |       |  | (UNUSE!      | <b>5</b> ) |

The book an variable 'Expanding' Loud he set to TRUE and the expansion of macro 'RDBUFF' Loud begin. The processing would proceed normally certil the start 'RDCHAR \$INDEV', when the macro RDCHAR is called. Do hat point, macro RDCHAR is called. Do hat point, the processing would call Exertind again. This time, ARG TAB look like


| parameter | value     |
|-----------|-----------|
| 1         | Fi        |
| 2         | (canused) |

The expansion of RDCHAR would also proceed normally. At the end of this electric time of RDCHAR was rewegnized, Expanding would be set to FALSE. Thus the muero processor hould "forget" that it had been in the muchalle oxpanding a mouro processor when it

アール・東 ラ俊

encountered he RDCHAR statement In addithors the auguments from the exigence the values in Programs (RDBUFF) would be lest because the values in Programs (RDBUFF) with the auguments from the overcontent with the auguments from the inversions of RDCHAR.

EXPAND is called Later It calls processed to REPEND is called Later It calls processed to REPEND Call to the REPEND before a return is made from his exiginal call. These problems solve the major processes being weather in a parming language processes being weather in a parming language.



tig 4112.

By top

General purpose Meccro processors - A general purpose maioro processors core not dependent on any particular proghamming languege, but combe used wina variety of different languages -dvanlages 1) The programmer doesn't need to leave about a different maero Jaellily for each compiler or assembly language 2) The costs is volved in pladueing a general purpose maiero processos are some what greater than those for developing a language specific processes. However this expense doesnot need to be repealed for each lemquege. - A general purpose fautility must provide Some way for a rises to define the Specific set of sules to be followed. · Comments should usually be ignored by a main processes. Havever each proghamming longuage has its own method

Edenti fying comments.

Next is related to the grouping of togetherterns, manprocessor states. Some A general purpose manprocessor do these grouping by scanning Source Statements ond end for grouping Statements.

There use special characters such as I and y - A mere general problem involves, the token of the programming languages for ex. Edentifiers, constants, operators & keywords. Longuages differ in the restrictions on the length of identifiers and rules for the frozmation of constants 'x x 1 in FORTRAN may be trealest by a macroprocesses ou livo separate characters rather than as a single operator. Haero definitions (muero invocation statements. DOE TO THE MALE THE STATE OF TH

## Macro praessing with in Language Translaters

propriet in vocations producing an expanded version of the source program. This expanded program is then used as Ip to an assembles of Compiler.

The macro processing functions are combined with in the language translators (assembler) itself. The simplest method of achieving this sould decombination is a line-by line macro processor.

Vsing this approach, the main processor heads the source program statements and perform all of Pts Junctions. However, he of lines are passed to the language translator as they are generated, one at a time, instead of being willen to an expended borner. Source file.

This line by line exproach has several advantages.

It avoids making an extra pass over the source pgm, thus more exticent

then using a main preprocessor.

2) Some of the dalastanetories used by maiero prephocesos & longuage translator can be combined Eg OPTAB in assembles and NAMTAB in The macroprocessors would be implemented in same

## Dis advantages

- They must be specifically designed & written to NORK with a particular implementation of an assembler or compiler.
- Q The cost of macro processor development must therefore be added to the cost of the language translator, which results in a more expensive piece of 5/w.

X A

#### MODULE VI

Device Drivers: 
Anatomy of a device driver, Chalacter and
block device drivers, General design of device
drivers.

Tout Editors: -

Overview of Editing, User Interface, Editor Standare,

Debuggers: -

Debugging functions and capabilities, Relationship with other points of the system, Debugging methods - By includion, Deduction and backtracking.

### DEVICE DRIVERS:

A device driver is a program that controls a particulus type of device that is attached to your computer. There are device drivers for printers displays, CDROM headors, diskelle drives, and so on. when you buy an operating system many device drivers are built in to the product. A device driver is a particular form of show application that is designated to enable presented with his devices. Without the required derive driver, the corresponding how device fails to work.

By the

A device driver usually communication the how by means of the subsystem or computer bus to which the how is connected. Device drivers are operating of specific and how dependent -A device deiver acts as a teanslater bho the how device and the parms or operating system that use it. The sole purpose of he device dever isto instruct a computer on how to communicate with the 1/P losp device by translating Os's 2/0 instructions in to a language that a dence can understand · There are vaerous types of device devers for to devices such as keybourds, mile, CD/DVD deives, controllers, peinters, graphies carde postso It is essential that a computer have the correct dence devers for all to parts to keep the s/m hunning safely and officery When first truning on a compeler, the Os works with the device devers and the basic No s/m Blos) to perform Who lasks without a derice driver the OS hould not be able to commenciate with the Ilo

Not only physical how devices rely on a device deliver to function, but sow components do as well.

Nost programs access devices by using general commands, the device driver translates the language in to specialized commands for the device.

Devices are, in general, complex and hard to use. Devices are controlled by communicating with device controllers. Horough device controller hegistus 1 or sending them commands is the format of a mag.

In order to manage this complexity, we create a modele for each dence controller whose job is to communicate with that pereticulars dence centroller. Everything that the slim needs to know about that device controller and the devices attached to it is centained in this modele. This modele is called a device deiver. The dence devers will know he details of how the device controller works (paddress of the controller segistics, bit layout in the legister, the format of the command mays, exact codes, when their codes, when their codes, when

- A device dever lenous how to control one device controllers Cand the devices connected to it and It also benows how to communicate the rest of the OS.

- A device deiver is an interface module that communicates in the devices language on one side and the oberating s/m/s language

other side. It is the spor equivalent to be der controller, and that is why there is a device do for every device controller fig- shows the relationship blow the devices, device controller, device driver and hest of the Os. Each device controller is connected to one one more devices. fig- Device Drivers in an Os Device RON-9/10 Dence Device Device Haldware processed Device controller is an Enternedicute electronic device used to Bus Non DMA path communication blus 1= 10 derices and computer (processor) on one side, if knows how to Communicate with the computer Dereie Device Contraled Controle S/m (usually over the s/m bus). Instoplia

· The controller is in a cord that plugs discertly isto the s/m bus, I there is a cable from the controller to each device. If controls). [DmA- directly head larite is the my]

# Typical parts of a dence deiver

Application interface | RTOS | RTOS | Specific.

Belvice | Duta Handling Hardware Interface } Device/phtform · RTOS have Std interface to the

Application interfer

· calling conventions · parameters · Device identification

ony alweation

· RTOS SENILL

· Semaphores

o quecues

· mry allocation

o Data Hemdling

I fendacione interfere

· Dence setup

o Read/wn telcontrol

dence driver like (real (), ofenco, read (), wn' L-().

Device Driver interfaces: -

A device driver is a s/w module that defines an interface, that is set of pracedures can be called.

A derice deiver contains all the 5/w noch mes It contains no: of main rocknes like a initialization routine, le cised to setrepadeuxe a heading howhne that is cosed to be able to head data from the device, and write routine to be able to write date to device

Two commen deviced river interfaces:

· Pot device Driver: open Cont devicentumber) -This call is made once before the device is used and allows the derice drives to do any necessary initialization on the dense. The dense Number Indicates which device is to be opened ofto de vice dever is handling more than one device In many devices (disks, /gs ex) this procedure doesnot do anything since no in Halization is necessary. But other devices (fore x, some pentes) lequire en initialization sequence when they are powered rep. The setersned value is success code for the open, which could buil of be cause the dence number is invalid on the device is not Leady to use o Port Device Driver-Close (int Device Number): - The's ca made once when the s/m is finished with the de

Design of Device Driver When you design your system it is very good if you can split up the software into two parts, one that is hardware independent and one that is hardware dependent, to make it easier to replace one piece of the hardware without having to change the whole application. In the hardware dependent part you should include:

- Initialization routines for the hardware
- Device drivers
- Interrupt Service Routines

The device drivers can then be called from the application using RTOS standard calls. The RTOS creates during its own initialization tables that contain function pointers to all the device driver's routines. But as device drivers are initialized after the RTOS has been initialized you can in your device driver use the functionality of the RTOS.

When you design your system, you also have to specify which type of device driver design you need. Should the device driver be interrupt driven, which is most common today, or should the application be polling the device? It of course depends on the device itself, but also on your deadlines in your system. But you also need to specify if your device driver should called synchronously or asynchronously.

# Synchronous Device Driver

When a task calls a synchronous device driver it means that the task will wait until the device has some data that it can give to the task, see figure 2. In this example the task is blocked on a semaphore until the driver has been able to read any data from the device.

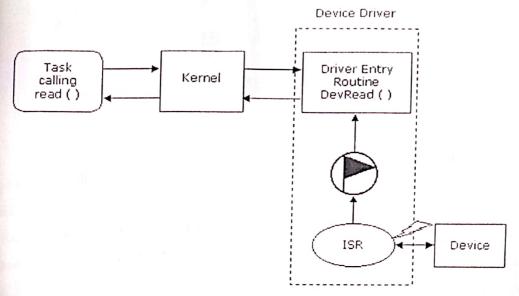



Figure 2. Synchronous device driver
The Task calls the device driver via a kernel device call. The Device Entry Routine gets blocked on a semaphore and blocks the task in that way. When an input comes from the device, it generates an interrupt and the ISR releases the semaphore and the Device Entry Routine returns the data to the task and the task continues its execution.

#### Asynchronous Device Driver

When a task calls an asynchronous device driver it means that the task will only check if the device has some data that it can give to the task, see figure 3. In this example the task is just checking if there is a message in the queue. The device driver can independently of the task send data into queue.

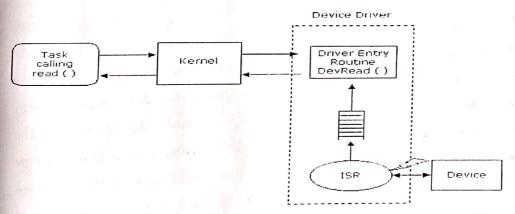



Figure 3. Asynchronous device driver
The Task calls the device driver via a kernel device call. The Device Entry Routine
receives a message from the queue and returns the data to the task. When new data
retrives from the device the ISR puts the data in a message and sends the message to
the queue.

Serial Input and Output Data Spooler

If the device driver should be able to handle blocks of data by itself, the device driver needs to have internal buffers for storing data. Two examples of a design like this are shown in figure 5 & 6.

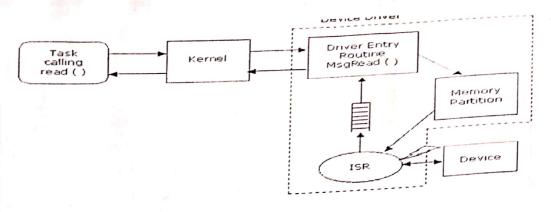
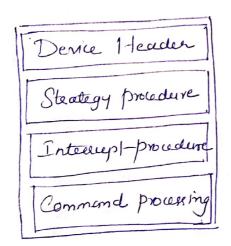




Figure 5. Serial Input Data Spooler
The Task calls the device driver via a Kernel device call. The Device Entry Routine receives a message from the queue and returns the data to the task and returns the buffer from memory partition. When new data arrives from the device the ISR allocates a buffer in a memory partition, puts the data in the buffer and puts a pointer to the buffer in a message and sends the message to the queue.

# Structure of a Device Donal



The device header is a formalled table of information that to os needs to setup and liste is to dence derver property. The state gy and interrupt procederes are called by the OS. The heet of the devee is composed of houtines that can be called with is the driver

Two categories of Device Drivers Black Device Driver

Block devices

- · Olganize dalat in finad size blocks.
- · Transfers core in units of blocks
- o Blocks have addresses and data are there fore addressable.

Fg. heard disk USB disks, CDROMS.

And their device derivers will have the Same interface inhich we will call the block device enterface

# The Block device interface

- of the device Driver, read (int device Number, int device Address, char \* buffer Address) => This call heads a block of information from address device Address end writes of into memory at address buffer Address.
- e ent device Driver, evrile (ent devicentimber, ent device Address, chae \* buffer Address)=

This call heads a block of information from memory at address buffer Address and while if to the disk block at address device Address.

el Address) -> This call moves the headfurnite heads to the correct extinder to head the block at address desce Address.

User process

Keenel

Head/ Write Sim call
handler

buffer mgmt routines

buffer cache headers

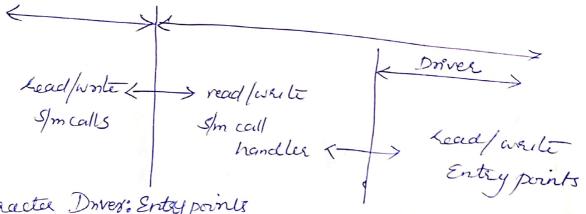
buffer cache date

buffer cache date

a Block derivers communicate with Os through a collection of fixed-sized beeffers.

# Character device Dines

# · Character devices:


- · Delivers or accepts a steen of characters eno block structure
- · Not addressable , no Secks
- · con read whate from stream or Write to Stream.
  - · Printers, retrook , interfaces, terminals.
- · Int device Driver, read Cint device Number, int number Of Byles, char \* buffer Address) - This can Leads number Of Bytes bytes from Character stream of the device and writes then is to menory at address beffer Address.
  - Int device Driver, write Cint devicentumber int number OfBytes, char & buffer Heldres )-This call reads number Of Byles byles from many address buffer Address and writes them to the character stream of the device.
  - o int device Driver. Device Control. (Int device Number, Int Control Operation Code, not Opera tion Data) - This call performs some device Specific action. The control operation lode indicates the type of operation, and operation Data is the dala to use, of necessary.
- To write chaeacters on a ternisal write the

the keyboard with the head procedure.

Data from character devices de esnot have an address chaeacter devices head larite nent data.

- The Device Control procedure is general, is that every character device donner hous one, but denice specific Since the meaning of a call to Device Control will differ from device to device . Fach device driver Will implement a set of Device central commands. ex tape have set of commands
- Painles have set of commands

· the syntax of the call is the same for each character device, but the semantics of the call contre different for each deiver.



· Character Driver: Entry points

insto; initialize h/w

Start(); Boot time initialized

Open (dev flag, id); initialization for head functi

close (der, flag, id): Release Resource cufter Read/white : data transfer.

· Block dever Entry points: inPtcs, opens, closes, Strategy() - Responsible for bondling soquests for data and replace both the read Enrile entry points found is character clovers.

Print () - Vied by heport the problems related to this doma.

# **Editors and Debugging Systems**

This Chapter gives you...

- Text editors
- Interactive Debugging Systems

#### 4.0 Introduction

An Interactive text editor has become an important part of almost any computing environment. Text editor acts as a primary interface to the computer for all type of "knowledge workers" as they compose, organize, study, and manipulate computer-based information.

An interactive debugging system provides programmers with facilities that aid in testing and debugging of programs. Many such systems are available during these days. Our discussion is broad in scope, giving the overview of interactive debugging systems – not specific to any particular existing system.

#### 4.1 Text Editors

An Interactive text editor has become an important part of almost any computing environment. Text editor acts as a primary interface to the computer for all type of "knowledge workers" as they compose, organize, study, and manipulate computer-based information.

A text editor allows you to edit a text file (create, modify etc...). For example the Interactive text editors on Windows OS - Notepad, WordPad, Microsoft Word, and text editors on UNIX OS - vi, emacs, jed, pico.

Normally, the common editing features associated with text editors are, Moving the cursor, Deleting, Replacing, Pasting, Searching, Searching and replacing, Saving and loading, and, Miscellaneous(e.g. quitting).

# 4.1.1 Overview of the editing process

An interactive editor is a computer program that allows a user to create and revise a target document. Document includes objects such as computer diagrams, text, equations tables, diagrams, line art, and photographs. Here we restrict to text editors, where character strings are the primary elements of the target text.

- Select the part of the target document to be viewed and manipulated - Determine how to format this view on-line and how to display it

Specify and execute operations that modify the target document

Update the view appropriately

The above task involves traveling, filtering and formatting. Editing phase involves

insert, delete, replace, move, copy, cut, paste, etc...

(- Traveling – locate the area of interest

Filtering - extracting the relevant subset

Formatting – visible representation on a display screen  $\int$ 

There are two types of editors. Manuscript-oriented editor and program oriented editors. Manuscript-oriented editor is associated with characters, words, lines, sentences and paragraphs. Program-oriented editors are associated with identifiers, keywords, statements. User wish - what he wants - formatted.

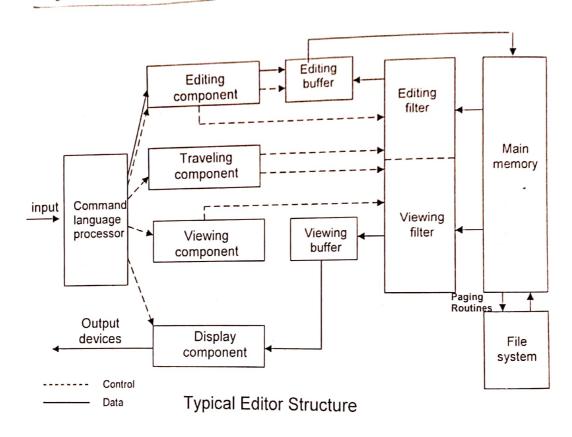
# 4.1.2 User Interface

and to the right. editors - Document is represented as a quarter-plane of text lines, unbounded both down world of the key punch - 80 characters, single line or an integral number of lines, Screen of the target document and its elements. Conceptual model of the editing system provides an easily understood abstraction target document and its elements. For example, Line editors – simulated the Line editors - simulated the

the results of the editing operations communication with the editor. to enter commands. The output devices, lets the user view the elements being edited and The user interface is concerned with, the input devices, the output devices and, the interaction language. The input devices are used to enter elements of text being edited and, the interaction language provides

symbols on the screen. Locator Devices are mouse, data tablet. There are voice input devices which translates spoken words to their textual equivalents. locator devices. Text Devices are keyboard. Button Devices are special function keys, Input Devices are divided into three categories, text devices, button devices and,

(Wysiwyg) and Printers (Hard-copy). (Cathode ray tube (CRT) technology), Advanced CRT Output Devices are Teletypewriters (first output devices), terminals. Glass teletypes THI Monitors


with oldest editors, in the form of use of commands, use of function keys, control keys menu-oriented user interface. Typing oriented or text command oriented interaction was The interaction language could be, typing oriented or text command oriented and

Menu-oriented user interface has menu with a multiple choice set of text strings or icons. Display area for text is limited. Menus can be turned on or off.

## 4.1.3 Editor Structure

Most text editors have a structure similar to that shown in the following figure. That is most text editors have a structure similar to shown in the figure regardless of features and the computers

Command language Processor accepts command, uses semantic routines performs functions such as editing and viewing. The semantic routines involve traveling, editing, viewing and display functions.



Editing operations are specified explicitly by the user and display operations are specified implicitly by the editor. Traveling and viewing operations may be invoked either explicitly by the user or implicitly by the editing operations.

In editing a document, the start\_of the area to be edited is determined by the current editing pointer maintained by the editing component. Editing component is a collection of modules dealing with editing tasks. Current editing pointer can be set or reset due to next paragraph, next screen, cut paragraph, paste paragraph etc....

When editing command is issued, editing component invokes the editing filter – generates a new editing buffer – contains part of the document to be edited from current editing pointer. Filtering and editing may be interleaved, with no explicit editor buffer being created.

In viewing a document, the start of the area to be viewed is determined by the current viewing pointer maintained by the viewing component. Viewing component is a collection of modules responsible for determining the next view. Current viewing pointer can be set or reset as a result of previous editing operation.

When display needs to be updated, viewing component invokes the viewing filter – generates a new viewing buffer – contains part of the document to be viewed from current viewing pointer. In case of line editors – viewing buffer may contain the current line, Screen editors – viewing buffer contains a rectangular cutout of the quarter plane of the text. Viewing buffer is then passed to the display component of the editor, which produces a display by mapping the buffer to a rectangular subset of the screen – called a window. The editing and viewing buffers may be identical or may be completely disjoint. Identical – user edits the text directly on the screen. Disjoint – Find and Replace (For example, there are 150 lines of text, user is in 100th line, decides to change all occurrences of 'text editor' with 'editor'). The editing and viewing buffers can also be partially overlap, or one may be completely contained in the other. Windows typically cover entire screen or a rectangular portion of it. May show different portions of the same file or portions of different file. Inter-file editing operations are possible.

The components of the editor deal with a user document on two levels: In main memory and in the disk file system. Loading an entire document into main memory may be infeasible – only part is loaded – demand paging is used – uses editor paging routines. Documents may not be stored sequentially as a string of characters. Uses separate editor data structure that allows addition, deletion, and modification with a minimum of I/O and character movement.

# 4.1.4 Types of editors based on computing environment

Editors function in three basic types of computing environments: Time sharing, Stand-alone, and Distributed. Each type of environment imposes some constraints on the design of an editor.

In time sharing environment, editor must function swiftly within the context of the load on the computer's processor, memory and I/O devices. In stand-alone environment, editors on stand-alone system are built with all the functions to carry out additing and viewing operations — The help of the OS may also be taken to carry out some tas'c like demand paging. In distributed environment, editor has both functions of standalore editor, to run independently on each user's machine and like a time sharing editor, cortend for shared resources such as files.

# 4.2 Interactive Debugging Systems

An interactive debugging system provides programmers with facilities that aid in testing and debugging of programs. Many such systems are available during these days. Our discussion is broad in scope, giving the overview of interactive debugging systems – not specific to any particular existing system.

#### Here we discuss

- Introducing important functions and capabilities of IDS
- Relationship of IDS to other parts of the system
- The nature of the user interface for IDS

#### 4.2.1 Debugging Functions and Capabilities

One important requirement of any IDS is the observation and control of the flow of program execution. Setting break points – execution is suspended, use debugging commands to analyze the progress of the program, résumé execution of the program. Setting some conditional expressions, evaluated during the debugging session, program execution is suspended, when conditions are met, analysis is made, later execution is resumed.

A Debugging system should also provide functions such as tracing and traceback. Tracing can be used to track the flow of execution logic and data modifications. The control flow can be traced at different levels of detail – procedure, branch, individual instruction, and so on... Traceback can show the path by which the current statement in the program was reached. It can also show which statements have modified a given variable or parameter. The statements are displayed rather than as hexadecimal displacements

#### 4.2.2 Program-Display capabilities

A debugger should have good program-display capabilities. Program being debugged should be displayed completely with statement numbers. The program may be displayed as originally written or with macro expansion. Keeping track of any changes made to the programs during the debugging session. Support for symbolically displaying or modifying the contents of any of the variables and constants in the program. Resume execution – after these changes.

To provide these functions, a debugger should consider the language in which the program being debugged is written. A single debugger – many programming languages – language independent. The debugger – a specific programming language – language dependent. The debugger must be sensitive to the specific language being debugged.

The context being used has many different effects on the debugging interaction. The statements are different depending on the language

Cobol - MOVE 6.5 TO X  
Fortran - 
$$X = 6.5$$
  
 $C = X = 6.5$ 

Examples of assignment statements

Similarly, the condition that X be unequal to Z may be expressed as

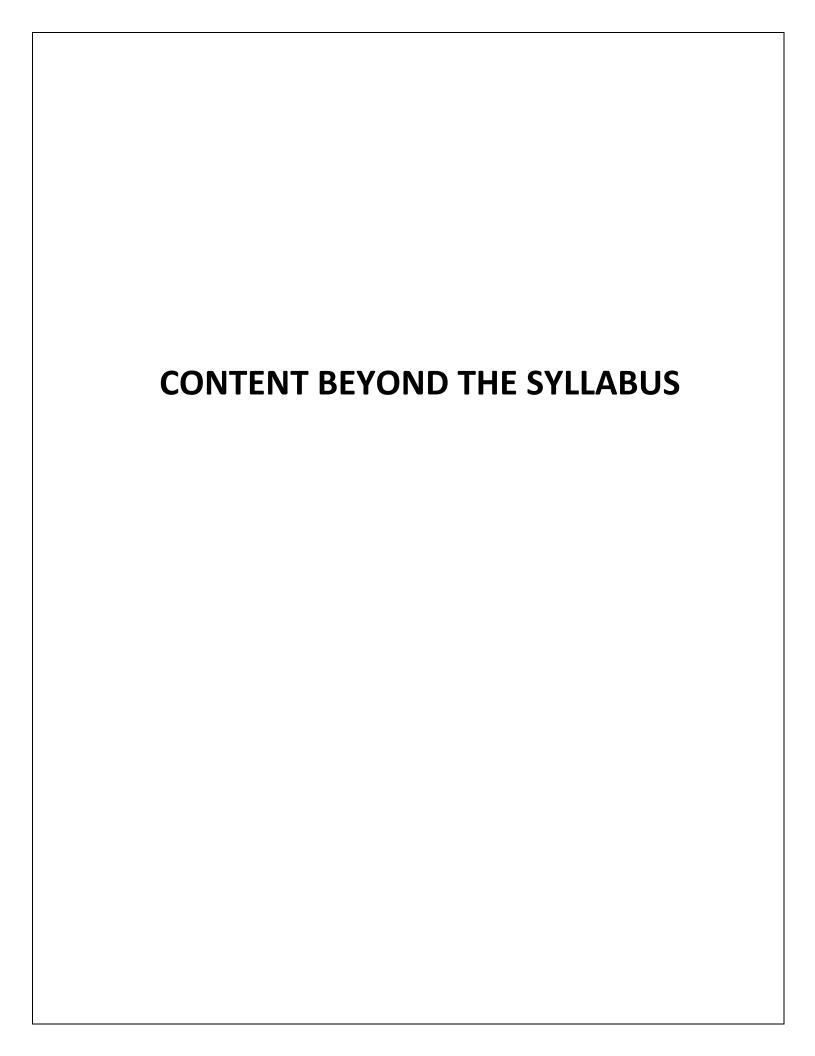
Similar differences exist with respect to the form of statement labels, keywords and so on...

The notation used to specify certain debugging functions varies according to the language of the program being debugged. Sometimes the language translator itself has debugger interface, modules that can respond to the request for debugging by the user. The source code may be displayed by the debugger in the standard form or as specified by the user or translator.

It is also important that a debugging system be able to deal with optimized code. Many optimizations like

- Invariant expressions can be removed from loops
- Separate loops can be combined into a single loop
- Redundant expression may be eliminated
- Elimination of unnecessary branch instructions

Leads to rearrangement of segments of code in the program. All these optimizations create problems for the debugger, and should be handled carefully.


## 4.2.3 Relationship with Other Parts of the System

The important requirement for an interactive debugger is that it always be available. Must appear as part of the run-time environment and an integral part of the system. When an error is discovered, immediate debugging must be possible. The debugger must communicate and cooperate with other operating system components such as interactive subsystems.

Debugging is more important at production time than it is at applicationdevelopment time. When an application fails during a production run, work dependent on that application stops. The debugger must also exist in a way that is consistent with the security and integrity components of the system. The debugger must coordinate its activities with those of existing and future language compilers and interpreters.

#### 4.2.4 User-Interface Criteria

Debugging systems should be simple in its organization and familiar in its language, closely reflect common user tasks. The simple organization contribute greatly to ease of training and ease of use. The user interaction should make use of full-screen displays and windowing-systems as much as possible. With menus and full-screen editors. the user has far less information to enter and remember. There should be complete functional equivalence between commands and menus - user where unable to use fulldiscreen IDSs may use commands. The command language should have a clear, logical and simple syntax; command formats should be as flexible as possible. Any good IDSs should have an on-line HELP facility. HELP should be accessible from any state of the debugging session.



#### Elaborate commands used in VI text editors.

There are many ways to edit files in Unix. Editing files using the screen-oriented text editor **vi** is one of the best ways. This editor enables you to edit lines in context with other lines in the file.

An improved version of the vi editor which is called the **VIM** has also been made available now. Here, VIM stands for **Vi IM**proved.

vi is generally considered the de facto standard in Unix editors because –

- It's usually available on all the flavors of Unix system.
- Its implementations are very similar across the board.
- It requires very few resources.
- It is more user-friendly than other editors such as the **ed** or the **ex**.

You can use the **vi** editor to edit an existing file or to create a new file from scratch. You can also use this editor to just read a text file.

# Starting the vi Editor

The following table lists out the basic commands to use the vi editor –

| Sr.No. | Command & Description                                                                           |
|--------|-------------------------------------------------------------------------------------------------|
| 1      | vi filename  Creates a new file if it already does not exist, otherwise opens an existing file. |
| 2      | vi -R filename  Opens an existing file in the read-only mode.                                   |
| 3      | view filename  Opens an existing file in the read-only mode.                                    |

Following is an example to create a new file **testfile** if it already does not exist in the current working directory –

#### \$vi testfile

The above command will generate the following output –

You will notice a **tilde** (~) on each line following the cursor. A tilde represents an unused line. If a line does not begin with a tilde and appears to be blank, there is a space, tab, newline, or some other non-viewable character present.

You now have one open file to start working on. Before proceeding further, let us understand a few important concepts.

### **Operation Modes**

While working with the vi editor, we usually come across the following two modes -

- Command mode This mode enables you to perform administrative tasks such as saving the files, executing the commands, moving the cursor, cutting (yanking) and pasting the lines or words, as well as finding and replacing. In this mode, whatever you type is interpreted as a command.
- **Insert mode** This mode enables you to insert text into the file. Everything that's typed in this mode is interpreted as input and placed in the file.

vi always starts in the **command mode**. To enter text, you must be in the insert mode for which simply type **i**. To come out of the insert mode, press the **Esc** key, which will take you back to the command mode.

**Hint** – If you are not sure which mode you are in, press the Esc key twice; this will take you to the command mode. You open a file using the vi editor. Start by typing some characters and then come to the command mode to understand the difference.

#### Detailed study of structure and record formats of DLL.

Dynamic Link Library (DLL) is Microsoft's implementation of the shared library concept. A DLL file contains code and data that can be used by multiple programs at the same time, hence it promotes code reuse and modularization. This brief tutorial provides an overview of Windows DLL along with its usage.

Dynamic linking is a mechanism that links applications to libraries at run time. The libraries remain in their own files and are not copied into the executable files of the applications. DLLs link to an application when the application is run, rather than when it is created. DLLs may contain links to other DLLs.

Many times, DLLs are placed in files with different extensions such as .exe, .drv or .dll.

# Advantages of DLL

Given below are a few advantages of having DLL files.

#### Uses fewer resources

DLL files don't get loaded into the RAM together with the main program; they don't occupy space unless required. When a DLL file is needed, it is loaded and run. For example, as long as a user of Microsoft Word is editing a document, the printer DLL file is not required in RAM. If the user decides to print the document, then the Word application causes the printer DLL file to be loaded and run.

#### Promotes modular architecture

A DLL helps promote developing modular programs. It helps you develop large programs that require multiple language versions or a program that requires modular architecture. An example of a modular program is an accounting program having many modules that can be dynamically loaded at run-time.

## Aid easy deployment and installation

When a function within a DLL needs an update or a fix, the deployment and installation of the DLL does not require the program to be relinked with the DLL. Additionally, if multiple programs use the same DLL, then all of them get benefited from the update or the fix. This issue may occur more frequently when you use a third-party DLL that is regularly updated or fixed.

Applications and DLLs can link to other DLLs automatically, if the DLL linkage is specified in the IMPORTS section of the module definition file as a part of the compile. Else, you can explicitly load them using the Windows LoadLibrary function.

## Important DLL Files

Mentioned below are some important **dll** files which user should know for programming –

- COMDLG32.DLL Controls the dialog boxes.
- **GDI32.DLL** Contains numerous functions for drawing graphics, displaying text, and managing fonts.
- KERNEL32.DLL Contains hundreds of functions for the management of memory and various processes.
- **USER32.DLL** Contains numerous user interface functions. Involved in the creation of program windows and their interactions with each other.

# Types of DLLs

When you load a DLL in an application, two methods of linking let you call the exported DLL functions. The two methods of linking are –

- · load-time dynamic linking, and
- run-time dynamic linking.

#### Load-time dynamic linking

In load-time dynamic linking, an application makes explicit calls to the exported DLL functions like local functions. To use load-time dynamic linking, provide a header (.h) file and an import library (.lib) file, when you compile and link the application. When you do this, the linker will provide the system with the information that is required to load the DLL and resolve the exported DLL function locations at load time.

#### Runtime dynamic linking

In runtime dynamic linking, an application calls either the LoadLibrary function or the LoadLibraryEx function to load the DLL at runtime. After the DLL is successfully loaded, you use the GetProcAddress function, to obtain the address of the exported DLL function that you want to call. When you use runtime dynamic linking, you do not need an import library file.

The following list describes the application criteria for choosing between load-time dynamic linking and runtime dynamic linking –

- **Startup performance** If the initial startup performance of the application is important, you should use run-time dynamic linking.
- **Ease of use** In load-time dynamic linking, the exported DLL functions are like local functions. It helps you call these functions easily.

• **Application logic** – In runtime dynamic linking, an application can branch to load different modules as required. This is important when you develop multiple-language versions.

## The DLL Entry Point

When you create a DLL, you can optionally specify an entry point function. The entry point function is called when processes or threads attach themselves to the DLL or detach themselves from the DLL. You can use the entry point function to initialize or destroy data structures as required by the DLL.

Additionally, if the application is multithreaded, you can use thread local storage (TLS) to allocate memory that is private to each thread in the entry point function. The following code is an example of the DLL entry point function.

```
BOOL APIENTRY DllMain(
 HANDLE hModule, // Handle to DLL module
 DWORD ul_reason_for_call,
 LPVOID lpReserved ) // Reserved
 switch ( ul_reason_for_call )
   case DLL_PROCESS_ATTACHED:
   // A process is loading the DLL. break;
   case DLL_THREAD_ATTACHED:
   // A process is creating a new thread.
   break:
   case DLL_THREAD_DETACH:
   // A thread exits normally.
   break;
   case DLL_PROCESS_DETACH:
      // A process unloads the DLL.
      break;
```

```
} return TRUE;
}
```

When the entry point function returns a FALSE value, the application will not start if you are using load-time dynamic linking. If you are using runtime dynamic linking, only the individual DLL will not load.

The entry point function should only perform simple initialization tasks and should not call any other DLL loading or termination functions. For example, in the entry point function, you should not directly or indirectly call the **LoadLibrary** function or the **LoadLibraryEx** function. Additionally, you should not call the **FreeLibrary** function when the process is terminating.